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Executive Summary

Applied research conducted from 1984 to 1990 on behalf of the Environmental Studies Research
Funds (ESRF) and Ice Centre Environment Canada (ICEC) has resulted in the implementation
of an operational Long Range Ice (sea ice and iceberg severity) Forecasting System (LRIFS) at
Ice Centre, Ottawa. The LRIFS system employs statistical models based on Empirical
Orthogonal Function (EOF) analyses of up to 40 years of regional surface and upper air weather
data to predict abundance of sea ice and icebergs, in some locations up to six months prior to
occurrence. The system also makes provision of the use of ice anomaly data to predict future
ice conditions. In the present work, this system has been generalized from its previous east
coast base, and is now configured for use anywhere in the northern hemisphere. Major
enhancements have been introduced to automate the identification of potentially viable
meteorological predictors, and tests have been added to eliminate predictors showing artificial
skill.

The LRIFS system has been applied to develop operational long range forecast equations for sea
ice area in the Beaufort Sea. Results presented here indicate that forecast lead times of a few
months which appear to have been achieved for the east coast are not achievable for the Beaufort
Sea. Operational equations are derived at best for one month lead times in July, August, and
September, and for the three month interval July through September. These are shown in most
instances to depend heavily on sea ice anomaly persistence as one of the predictors in the
multiple regression forecast models. Nevertheless, for these relatively short lead time models,
correlation coefficients calculated between predicted and observed ice area routinely achieve
values well in excess of 90%. A major impediment to the application of LRIFS for Beaufort
Sea use is the very short (1960 to 1980) interval of digital sea ice data which is available. This
fact leads to the primary recommendation of the work, which is that the predictand data base be
extended to include the interval 1981 through 1992.
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RESUME

La recherche appliquée, menée de 1984 a 1990 pour le Fonds pour I’étude de I’environnement
et le Centre des glaces d’Environnement Canada a abouti a la mise d’un syst¢éme de prévision
a longue portée des glaces (glaces de mer et icebergs) au Centre des glaces, a Ottawa. Des
modeles statistiques, basés sur les analyses de la fonction orthogonale empirique de plus de
40 ans de données sur les conditions régionales en surface et en altitude, servent a prédire
I’abondance des glaces de mer et des icebergs, jusqu’a six mois a ’avance a certains endroits.
Les données sur les anomalies des glaces sont aussi utilisées pour prédire le futur régime des
glaces. Le systeme s’appliquait seulement a la cOte est, mais il a été généralisé et sa
configuration actuelle en permet I’utilisation partout dans I’hémisphére nord. Au nombre des
grandes améliorations apportées, 1’identification des prédicteurs viables a été automatisée et
des tests ont été ajoutés pour éliminer les prédicteurs montrant une capacité artificielle.

Le systeme a servi a développer des équations opérationnelles de prévision a longue portée
sur I’étendue de glaces dans la mer de Beaufort. Selon les résultats ici présentés, les délais de
prévision de quelques mois qui semblent avoir été obtenus pour la cote est ne sont pas
réalisables pour la mer de Beaufort. Les équations opérationnelles visent au mieux un mois en
juillet, aolit et septembre, et trois mois de juillet a septembre. Dans la plupart des cas, elles
dépendent fortement de la persistance des anomalies comme 1’un des prédicteurs des modéles
de régression multiple. Néanmoins, pour des délais relativement courts, les coefficients de
corrélation entre 1’étendue prévue et 1’étendue réelle calculés permettent couramment
d’obtenir des valeurs supérieures a2 90 %. L’intervalle trés court (de 1960 a 1980) des données
numériques sur les glaces de mer qui est disponible constitue un gros obstacle a la mise en
oeuvre du systeme en ce qui a trait a la mer de Beaufort. Il est donc avant tout recommander
d’élargir la base de données des prédicants pour comprendre I’intervalle entre 1981 et 1992.
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1. INTRODUCTION AND PURPOSE

1.1 Setting

Statistical models based on Empirical Orthogonal Function (EOF) analyses of up to 40 years of
regional surface and upper air weather data have been installed operationally since 1991 in the
Long Range Ice Forecasting System (LRIFS) at Ice Centre Environment Canada, in Ottawa.
Theses models are employed to predict the abundance of sea ice and icebergs on the Canadian
east coast, up to six months prior to occurrence. This report describes work undertaken under
funding from the Environmental Studies Research Funds (ESRF), by Seaconsult Limited of St.
John’s, Newfoundland, to investigate whether these same or similar methods can successfully
be applied to predict Beaufort Sea sea ice abundance and timing, in advance of the ice season.
This work has been partially supported by Environment Canada, and has been conducted under
the joint technical project management of Mr. Oleh Mycyk, representing the interests of ESRF,
and Mr. Tom Carrieres, representing the interests of Ice Centre, Environment Canada.

1.2 Previous Research

At the height of early 1980’s hydrocarbon exploration activity on the Grand Banks, funding was
made available through the Environmental Studies Research Funds (ESRF) to attempt the long-
range prediction of Grand Banks iceberg season severity. The term "long-range" here refers to
the issue of forecasts one to several months in advance of the predicted event. Two independent
studies commenced in 1984 with ESRF support. One, reported by Marko et al. (1986),
attempted the use of deterministic methods based on physical transport mechanisms to predict
iceberg abundance. This work did not result in the development of an operational model for
long-range severity prediction. The other, reported by Davidson et al. (1986), employed
statistical methods based on regional fields of meteorological parameters, again to predict annual
iceberg abundance south of 48° N latitude. Although this work did not yield an operational
long-range severity prediction model, its methods were employed to accurately predict the
severity of the 1986 Grand Banks iceberg season. Based on 30 year hindcast tests (1951-1980),
models developed in this study were highly successful in predicting the most severe years. Some
27 of 30 years were predicted with moderate to good accuracy.

An attempted extension of the statistical prediction approach is reported by Davidson (1987).
The use of sea surface temperature (SST) data as an additional predictor field was investigated
and determined to be premature, based on the conclusion that "available collections of SST data
are far too sparse in the more northerly regions, to justify their use in statistical schemes for
long-range iceberg season severity prediction". As well, analogue-assisted forecasting for late
season predictors was investigated, but was found to yield only fractional, if any, improvements
in forecast skill over the direct use of earlier season predictors.

In a major extension of this iceberg severity prediction work between 1989 and 1992, the same
statistical methods were implemented to attempt prediction of east coast sea ice severity. It was
hypothesized that a transformed version of the iceberg severity prediction techniques would
prove skilful in sea ice severity prediction. It was recognized that the sea ice problem is much
more complex due to the spatial nature of sea ice distribution (versus the scalar nature of iceberg




flux), and due to the more rapid time scales of variability of sea ice distributions than of iceberg
flux. ~ Specific tasks included (i) investigation of indexing schemes for sea ice severity
classification, and choice of schemes suitable for Canadian East Coast conditions; (ii) application
of EOF techniques developed for iceberg season prediction, and selection of prospective
predictors for east coast ice abundance in four distinct regions including the Gulf of St.
Lawrence, the southeastern Grand Banks, the south/central Labrador Shelf, and the north
Labrador shelf; (iii) isolation of predictors which are most skilful; and (iv) development of these
into an operational long-range sea ice severity prediction scheme. This work, reported by
Davidson (1992) resulted in the installation of the operational LRIFS system at Ice Centre
Environment Canada.

Of particular interest to the present study is the history of long range ice severity prediction in
the western Arctic. Research in long-range forecasting of Arctic sea ice has been active since
the late 1970’s, but progress has been slow (Chapman and Walsh, 1991). Early work on long-
range forecasting of Arctic ice was undertaken by Barnett (1980), who discovered correlations
between summer ice severity on the North Coast of Alaska and April meteorological conditions
in Siberia.

Walsh (1980) studied the predictability of Arctic sea ice extent using empirical orthogonal
functions. He found that for lags of up to one month, ice anomaly persistence (i.e.
autocorrelation with previous sea ice conditions) proved to be the most skillful predictor. For
lags of 1-2 months, predictors derived from meteorological fields were found to be nominally
significant. For longer forecast lags, little significant skill was obtained.

Johnson, Lemke, and Barnett (1985) systematically investigated the prediction of Arctic sea ice
anomalies using internal (i.e. sea ice) and external (i.e. atmospheric and oceanic) predictors with
lags of up to 6 months. The highest skill was obtained using a cyclostationary internal model
for lags of up to 2 months. The use of external predictors gave smaller skill with one exception:
with a 3 month forecast lag, North Pacific SST was found to be a better predictor of ice in the
western Bering Sea than lagged sea ice.

Chapman and Walsh (1991) compared an analog method of predicting Arctic sea ice anomalies
with predictions using ice anomaly persistence. They report that while they show statistically
significant skill, analog forecasts are unable to outperform simple persistence at lags of up to
one month. Longer-range predictions were less successful, although lagged regional ice cross-
correlations showed some promise.

Seasonal and interannual patterns in Arctic sea ice anomalies have also been reported (Barnett,
1980; Hibler and Walsh 1982; Mysak and Manak, 1989). In the Beaufort Sea, a 4-6 year cycle
has been identified (Barnett, 1980 Mysak and Manak, 1989).



1.3 Scope and Purpose of Current Work

The following specific objectives were established for the current work.

- Develop Work Plan, Schedule, and Payment Plan

Due to the combined financing of ESRF and Environment Canada, there was requirement
for subdivision of technical tasks and financial/contractual obligations. The required
Work Plan, Schedule, and Payment Plan was jointly submitted to ESRF and Environment
Canada in January 1992. This technical report incorporates all pertinent technical
information, whether applicable to the ESRF or to the Environment Canada portions of
the work.

- Generalize to Hemispheric Predictor Data Files

It was recognized as imperative that any system developed for Beaufort Sea operation be
fully compatible with the existing East Coast LRIFS system. When this work
commenced, that existing system operated on a fixed 15 x 15 element geographical grid
of historical meteorological data (also referred to as predictor data). The desired
approach was to generalize the handling of meteorological data so as to make predictor
data from a much larger region (most probably the entire northern hemisphere),
accessible to the long-range forecasting system for the purpose of searching for viable
ice predictors. This generalized, hemispheric system would function identically for the
East Coast, the Beaufort Sea, or for any other region.

- Prepare Predictor Data

The necessary hemispheric weather files were to be prepared by extracting files of
weather data from available sources onto the hemispheric predictor data grid. Data types
(parameters) to be included in this extraction process were: (a) mean sea level pressure,
(b) 1000 mb, 700 mb and 500 mb geopotential height, (c) 700-1000 mb and 500-1000
mb thickness, and (d) surface air temperature. The duration of weather data to be
extracted was to more than exceed the duration of available Beaufort Sea sea ice
occurrence data.

- Prepare Predictand Data
Full years (ice seasons) of digital Beaufort Sea sea ice occurrence and distribution data
were to be extracted from AES Ice Centre archives, for as long a continuous interval as
possible.

- Automate Execution of Single/Multiple Regression Tests

The past practice in selecting viable predictors had been to (i) manually prepare large
numbers of execution commands for input to the linear regression package, causing large



numbers of linear regression tests to be run; (ii) visually assess the results of the linear
regression test; (iii) manually prepare selected execution commands for the multiple
regression package; and (iv) visually assess the results of the multiple regression tests to
select most skilful equations. It was the purpose of this task to automate the first three
of these four steps.

- Develop Forecast Equations for Beaufort Sea Sea Ice Occurrence

- Report Findings to ESRF and Ice Centre Environment Canada.

1.4 Complimentary Documents

It is important that the reader of this Technical Report recognize the relationship of this
document to previously reported research as well as to other documents delivered to Ice Centre
under this contract. This Technical Report deals almost exclusively with the scientific aspects
of developing enhanced prediction schemes, identifying predictors, assessing forecast skill,
modifying the LRIFS system, etc. One brief section (Chapter 4.6) quotes the specific prediction
equations which have been recommended for installation in the operational forecast system at
Ice Centre. With that exception, this report does not deal extensively with the operational
forecast system. Rather, that system is detailed in two complimentary documents which have
been delivered to Ice Centre. These are the System Specification referenced as Pinhorn (1993a)
and the User’s Manual referenced as Pinhorn (1993b). Neither does this report extensively
revisit the evolution of the EOF forecasting methods. That history is well traced in the series
of documents referenced as Davidson et al. (1986), Davidson (1987) and Davidson (1992).



2. LRIFS SYSTEM DESCRIPTION AND MODIFICATIONS
2.1 Review of Statistical Methods

The previous research discussed in Chapter 1.2 above was based on time-lagged correlation
analyses between atmospheric features and ice severity indices for east coast sea ice and
icebergs. The statistical method of Empirical Orthogonal Function (EOF) analysis was employed
to extract dominant mode pattern information from long time-series (> 30 years) of regional
fields of atmospheric pressure, height, thickness and temperature data. Regression analyses were
performed between coefficients describing the contribution of each such dominant mode to a
particular monthly or seasonal data field, and various ice abundance indices. Thereby, it was
possible to identify meteorological conditions early in the iceberg season (November to March),
which were well correlated with iceberg abundance through the peak of the season (March to
June). Multiple regression tests with groups of individually skilful predictors were then
employed to identify practical multi-predictor forecast schemes. A synopsis of the relevant
empirical orthogonal function (or eigenfunction) theory is reproduced from Davidson et al.
(1986) as Appendix 1. In practical terms, this method provides the means to test the correlation
between ice severity indices in a particular location and season, and previous regional weather
conditions.

2.2 Methods for Assessing Forecast Skill

2.2.1 Methods Employed in Previous Work

To interpret the utility of any tentative forecast method, a quantitative means of assessing the
skill of that method must be implemented. The methods of skill assessment developed in
previous work are here reviewed.

Four complementary skill indicators have come to be used in assessing useful multiple regression
predictor combinations. First, apparently skilful individual predictors are identified on the basis
of relatively large correlation coefficients emerging from linear regression tests between
predictor eigenfunction coefficients and ice indices. Predictor time domains employed in past
east coast iceberg and sea ice work have ranged from 22 to 39 years depending on the
availability of predictor data fields and the duration of the predictand data record. Potentially
useful predictors thus identified are tested by performing a 22 to 39 year dependent hindcast,
and comparing the results of this hindcast against actual ice index occurrence values.

A second coarse measure of predictive skill in such a hindcast is obtained by dividing the
forecast domain into terciles (one third least severe, one third moderate, and one third most
severe years). The available years of predictions are ranked by increasing ice index value and
are separated into three equally sized sets. For example, with 30 years of predictor data, the
three sets would be defined as ranks 1 to 10, 11 to 20, and 21 to 30. Tercile errors are then
computed. Again, using the 30 year example, years with observed rank 1 to 10 and predicted
rank 1 to 10 would yield an error of 0. These are termed "Category Errors”. Pursuing this
same example, a prediction of 21 to 30 for an observed rank of 1 to 10 would yield a Category
Error of 2. Experience in the use of these Category Error skill indicators has shown that unless




there is uniform year to year variation in the ice severity index (which condition is virtually
never met), this method is rather poor for discriminating true forecast accuracy in the first and
second terciles. The true merit of a tercile Category Error scheme has been shown to lie in the
number of predicted cases with Category Error = 2. Actual forecasts (hindcasts) which yield
low (or ideally zero) values of Category Error = 2 can be regarded as demonstrating true skill.

Thirdly, more refined classification schemes than the tercile ranking have been introduced. With
such schemes it is possible to illustrate the skill of a prediction using absolute Class Error as an
indicator. This is simply the numerical absolute value of the difference between predicted and
observed class. One of two classification schemes for sea ice area indices is commonly
employed, depending on the mean (x) and standard deviation (o) values of the area index. These
computed class definitions are specified in Table 2.1.

Table 2.1 Definition of Sea Ice Severity Classes

Class 1 2 3 4 5
Upper Bound -0 X-0 x-Ya0 x+Y%a x+1%o
Lower Bound X-0 x-Yao x+Y%a x+1%¢ oo

or, forg/x > 2 =

Class 1 2 3 4 5
Upper Bound -0 X-0 x-Yao X x+1%¢
Lower Bound X-0 X-YA0 X x+1%¢ o

The same principle described above for tercile category error distributions is applicable with
class error distributions: true forecast skill is manifested by the minimal occurrence of class
errors in the higher (class error > 3) divisions.

Fourthly, and finally, a rank error index (called Delta Rank) is in use. This latter factor is
assessed by computing the difference between observed and hindcast severity rank (least severe
year has rank 1 and most severe year in an n year population has rank n). Small values of this
Delta Rank parameter indicate that severe years are being hindcast correctly.

These four skill indicators appear on every printed sheet of hindcast results output from LRIFS.
Table 2.2 is provided to illustrate the format in which hindcast results are printed, and to
identify the location of the four skill indicators on a typical output sheet. This sample is
included to illustrate format: the numerical content of the sample provided in Table 2.2 is
arbitrary, and of no technical importance.



‘ '. Table 2.2 Sample Multiple Regression Output With Four Skill Indicators Highlighted

DEPENDENY COMPARISON OF OBSERVED SEA ICE AREA VS PREDICTED SEA ICE AREA
FOR SOUTH REGION BOUNDED BY 44 - 56 W AND 43 - S2 N
FOR ICE CONDITIONS SPANNING 1 MONTH(S) ENDING IN JANUARY

Region : new_data Size : 10 x 10
Latitude : 45 to 90 Deg. N Longitude : 10 to 100 Deg. W
1ssue Date : January ist Run Date : 13:55:41 25-Jon-93

MLR Equation # 1

Predictor # Months Ending_In
Mean Sea Level Pressure 1 December A(1)
1 Surface Air Temperature 6 December  A(1)
Surface Air Temperature 2 December A(2)
Correlation Coefficient : .65
YEAR OBSERVED PREDICTED (P-0) OBS RANK PRED RANK DELTA RANK
1969 5427. 27504 . 22078, 1. 1. 10.
1982 5572. 0. -5572. 2. 1. -1,
1966 6721, 13159. 6438. 3. S. 2.
1978 8114, 28574. 20461, 4. 12. 8.
1963 9082. 13336. 4254, 5. 6. 1.
1970 11153. L. -6982. 6. 3. -3.
1979 13126. 22917. 9791. 7. 9. 2.
1964 13870. 16406. 2536. 8. 8. 0.
1968 14201. 15272. 1071, 9. 7. -2.
1962 15748. 0. -15748. 10. 2. -8.
1980 16450. 39076. 22626. 11. 19. 8.
1981 16457, 38098. 21641, 12. 18. 6.
1967 17057. 24893. 7836. 13. 10. -3.
1975 18410. 30267. 11857. 14, 14.
1965 18572. 31800. 13227. 15. 15. .
1976 20893. 36830. 15937. 16. 17. 1.
1971 22213. 30079. 7866, 17. 13. -4,
1977 23084, 34324, 11239. 18. 16. -2.
1972 43093, 47907. 4814. 19. 20. 1.
1974 44034. 8684 . -35350. 20. 4. -16. 4
1983 45903, 50653. 4749, 21. 21. o.l
1973 164197, 68023. -96174. 22. 22. g.
MEAN 25153. 26453,
STD. DEV. 33178. 17046.
MEAN OF ABSOLUTE VALUES 11084. 2.8
STD. DEV. OF ABSOLUTE VALUES 7184, 3.6
CATEGORY ERRORS: DISCREPANCY CLASS ERRORS: DISCREPANCY
BETWEEN OBSERVED BETWEEN OBSERVED CHANCE
AND PREDICTED CATEGORIES COUNT AND PREDICTED CLASSIFICATION COUNT ERROR
0 13 0 15 5.5
8 i 7 9.8
2 1 2 0 5.5
3 0 1.3

2 3




2.2.2 Composite Skill Index

The four indicators described above have been employed in previous studies to search for
potentially viable individual predictors. Once isolated, these apparently skilful predictors have
then been judiciously grouped to test various multiple regression combinations. This two-step
process has required considerable manual/visual assessment, ultimately demanding subjective
judgement on the basis of these four skill indicators, to isolate most desirable sets of predictors.
In the first step, decisions were required to define groupings of the predictors which evolve from
the linear regression tests. In the second step, the output from each multiple regression test was
visually assessed against hindcast results from other multiple regression combinations (for a
given region, predictand, and time interval) to select the apparently best combinations. In a most
significant change to the LRIFS system, an objective Composite Skill Index has been developed,
tested, and implemented so as to streamline the human intervention and decision making required
in isolating useful forecast equations. Implementation of the Composite Skill Index (CSI) allows
all possible combinations of predictors to be investigated, with only the apparently most skilful
predictor combinations then saved for final human inspection and acceptance.

The composite skill index incorporates the four skill indicators in the manner described in
Table 2.3. The composite skill index does not in any sense eliminate the need for human
assessment of hindcast results as skilful equations are being sought, but it provides a single
quantitative parameter by which to rank the results of hindcast tests using thousands of potential
equations. In this manner, it focuses human attention on the few best possible equations.

Current practice is to employ the CSI to isolate up to ten individual predictors for each
meteorological parameter for each combination of region, predictand, and issue date. With
certain defined constraints about allowable combinations, all possible multiple regression
combinations of these isolated individual predictors are then assessed. For each region,
predictand, and issue date, up to the S0 best combinations are saved, ranked by CSI. The sole
human judgement required in the present configuration, then, is to review these 50 (or less)
equations, and to identify those three which are to be retained in the operational forecast
equation matrix.

2.3 Northern Hemisphere Expansion of Predictor Domain

Just as the ability to automatically identify and rank high quality forecast equations has evolved
over the years that this work has been active, so has the flexibility to select geographical
boundaries for the predictor region improved. In the earliest iceberg work, an arbitrarily defined
region spanning 50° latitude by 100° longitude, centred over the Labrador Sea, was the sole
option. As the system was expanded to incorporate the ability to forecast east coast sea ice
severity, geographical flexibility was also added. It was then possible to define any square
predictor grid within a 15 x 15 element domain defined by latitudes 20" N and 90° N, and by
longitudes 0° W and 140° W. Allowable predictor grids were tested with sizes 6 x 6 through
15 x 15, at various locations within this maximum 15 x 15 domain.



Indicator

Correlation
Coefficient

Category error

Class error

Delta rank

Table 2.3 Definition of Composite Skill Index (CSI)

CSI Contribution

30%

20%

20%

30%

Comments on method of inclusion in CSI

absolute value of "r" contributes to CSI.

contribution drops off as the square of the
number of events with category error of 2,
and is adjusted marginally for differences
between number of events with category
error of zero or 1.

contribution drops off as the square of the
number of events with class error of 4 or
greater, and is adjusted with proportionally
lighter weights for differences between
number of events with class error of zero
through 3.

contribution decays in approximate linear
fashion based on number of the five events
which have rank errors, and on the
magnitude of those errors.

The weightings for the four components of the CSI are adjustable. All results included in this
report employ the [30%, 20%, 20%, 30%] scheme noted above.



A major accomplishment of the present work has been to expand the available predictor domain
to span the entire Northern Hemisphere. All predictor data sets have been updated for the entire
hemisphere (see Chapter 4.2), and a practical menu interface has been added to LRIFS to allow
maximum flexibility in user definition of the geographical region for calculation of predictor
eigenfunctions.

2.4 Confirmation of System Compatibility

Significant activities completed in connection with the present work have included introduction
of the Composite Skill Index (Chapter 2.2.2) with partial automation of equation selection,
expansion of the predictor domain to span the entire Northern Hemisphere (Chapter 2.3),
updating and partial replacement of most meteorological predictor files (Chapter 4.2), and major
modifications to the LRIFS User Interface (Pinhorn, 1993b). The LRIFS package has also been
moved to a new host computer system. Most of these activities represent major structural
changes to LRIFS. To verify the proper functioning of LRIFS after all of these changes had
been made was deemed to be a critical requirement. Three examples of such verification work
are here provided to document the compatibility between the present version of LRIFS, and
versions which had previously been considered to be ready (or near-ready) for operational
forecast use.

2.4.1 Linear Regression Compatibility Test for Iceberg Flux Hindcast

Linear regression tests for MSLP 4 months ending March a(l) to hindcast iceberg flux are
shown in Table 2.4. The left panel of this table is a direct reproduction of Table 1.3(a) from
Page 137 of Davidson et al. (1986). The right panel is output from LRIFS generated
January 26, 1993. Virtually the same MSLP data sets contribute to each of these hindcasts, as
no changes to the LRIFS MSLP data holdings have been made since 1984. Values of predicted
iceberg flux in each of the two cases are nearly identical. A corrected value of actual flux for
1962 (changed for 112 to 122) causes minor differences in the Predicted Rank and Delta Rank
statistics, and these are sufficient to cause minor changes in the counts for Class Error = 2.
The counts for Category Error and the Correlation Coefficient are exactly the same in both
panels. This table provides tangible evidence of compatibility in MSLP linear regressions in
spite of the enormous system changes which have been implemented between 1986 and 1993.

2.4.2 Multiple Regression Compatibility Test for Iceberg Flux Hindcast

Results of a five parameter combination used to predict iceberg flux are shown in Table 2.5.
The left panel of this table is a direct reproduction of Table I.10(b) from Page 153 of Davidson
et al. (1986). The right panel is output from LRIFS generated January 26, 1993. The 700 mb
height data and the 700 - 1000 mb thickness data contributing to this multiple regression test
have undergone minor changes since 1986. Copies of these time series data from multiple
sources have been recombined in different groupings of years than was the case in 1986. Again,
however, the columns of predicted iceberg flux values in these two panels show excellent
correspondence in magnitude and especially in trend. Again the correlation coefficient is
unchanged. Even though there are clearly noticeable difference in the Category Error and Class
Error tables, these differences have little effect on the actual assessment which would be made

- 10 -
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Table 2.4

Linear Regression Compatibility Test for Iceberg Hindcast

Left Panel From Davidson et al. (1986) and Right Panel From Current Work

DEPENDENT OOMPARISON OF OBSERVED ICEBERG FLUX VS PREDICTED ICEBERG FLUX

Parameter MEAN SEA LEVEL PRESSURE TIME AVERAGED APPROACH
Number of Months: 4 Correlation Coefficient r: -.49
Ending in :
YEAR a( 1) OBSERVED PREDICTED (P-O) (P-O / SD) OBS RANK PRED RANK DELTA RANK
1966 42.28 0. 11. 11. .03 1. 3. 2.
1958 35.16 1. 57. 56. .14 2. 6. 4.
1952 22.02 15. 142. 127. .31 3. 9. 6.
1977 39.25 22. 30. 8. .02 4. 4. 0.
1980 -17.09 23. 396. 373. 91 5. 20. 15.
1963 4.38 25. 257. 232. 56 6. 14. 8.
1953 -15.37 56. 385. 329. .80 7. 19. 12.
1969 50.80 57 0. -57. -.14 8. 1. -7.
1955 23.06 61 136 75. .18 9. 8. -1.
1971 12.70 73 203 130. .31 10. 1. 1.
1978 6.71 75 242 167. 40 11 13. 2.
196% 1.76 76 274 198. 48 12. 1S. 3.
1956 -3.79 80 310. 230. 56 13. 16. 3.
1970 20.62 8S 1 66. 16 14. 10. -4.
1975 -21.05 101 422 321. 78 15 22. 7.
1962 36.13 112 51 -61. -.15 16 S. -11.
1961 ~14.03 114 377 263. 64 17 18B. 1.
1976 ~64.98 151 708 5587. 1.35 18 29. 11.
1979 30.22 182 8 -93. -.23 19 7. -12.
1968 8.51 226 230 4. 01 20 12. -8.
1960 42.35 258 10 -248. ~-.60 21 2. -19.
1954 -49.06 312 604 292 71 22 28. 6.
1964 -34.07 369 507 138. 33 23 26. 3.
1967 -28.82 441 473 32. 08 24 23. -1.
1959 -17.81 689 401 -288. -.70 25 21. -4.
1973 ~-47.72 850 596 -254. -.62 26 27. 1.
1957 -10.59 931 354 -577. -1.40 27 17. -10.
1974 -30.35 1386 483 -903. -2.19 28 24. -4.
1972 -33.23 1584 501. -1083. -2.62 29 25. -4.
MEAN 288, 288.
STD. DEV. 413, 203.
MEAN OF ABSOLUTE VALUES 247 .4 .60 5.9
STD. DEV. OF ABSOLUTE VALUES 255.4 .62 4.8
CATEGORY ERRORS: DISCREPANCY CLASS ERRORS: DISCREPANCY
BETWEEN OBSERVED BETWEEN OBSERVED
AND PREDICTED CATEGORIES OOUNT AND PREDICTED CLASSIFICATION COUNT
0 18 1] S
1 10 1 10
2 1 2 11
3 3
4 o]
S o]
6 [

tatitude : 45 to 90 Deg. N
Region data_test
Predictor

Ending in Month

YEAR
1966
1958
1952
1977
1980
1963
1953
1969
1955
1971
1978
1965
1956
1970
1975
1961

1976
1979
1968
1960
1954
1964
1967
1959
1973
1957
1974
1972

MEAN
STD. DEV.

1
42.23
35.12
21.98
39.21

-17.13
4.33
<15.42
50.76
23.02
12.65
6.66
1.
-3.83
20.58
-21.10
-14.08

-65.02
30.18
8.47
42.30
-49.10
-34.12
-28.86
-17.85
-47.76
-10.63
-30.39
-33.27

OBSER

MEAN OF ABSOLUTE VALUES

STD. DEV. OF ABSOLUTE VALUES

CATEGORY ERRORS:

BETWEEN OBSERVED
AND PREDJCTED CATEGORIES COUNT

0
1
2

&
3 MARCH
TED
0. 9.
1. 56.
15. 141,
22. 29.
23, 396.
25. 256.
56. 385.
57. 0.
61. 134.
73. 202.
75. 241,
76. 273.
80. 309.
85. 150.
101, 422.
14, 376.
122. 49.
151. 708.
152. 8s.
226. 229.
258. 9.
312, 605.
369. 507.
441, 473.
689. 401.
850. 5%96.
931. 354.
1386. 483.
1584. $01.
287. 289.
413, 201,
DISCREPANCY

18
10
1

Longitude :

Run Date

: MEAN SEA LEVEL PRESSURE
Nutber of Months:

to
10:25:39 26-Jan-93

DEPENDENT COMPARISON OF OBSERVED ICEBERG FLUX VS PREDICTED ICEBERG FLUX

100 Deg. W

Correlation Coefficient
Composite Skill Index

p-
9.
55.
126,
7.
3.
231,
329.
-57.
73.
129.
166.
197.
229.
65.
321.

262.
-73.
557.
~6h,
3.
-249,

180.
166.

CLASS ERRORS:

AKD PRI

G NV WN

1CT!

DISCREPANCY
BETWEEN OBSERVED
CLASSIFICATION

Vs W - o

ANK__PRED RAN

3 -.49
42

12.

-1.

5.1

4.3

DELTA RAN

Count

]
1%
7

3
0
0
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Table 2.5 Multiple Regression Compatibility Test for Iceberg Hindcast
Left Panel From Davidson et al. (1986) and Right Panel From Current Work

DEPENDENT COMPARISON OF OBSERVED ICEBERG FLUX VS PREDICTED ICEBERG FLux
DEPENDENT COMPARISON OF OBSERVED ICEBERG FLUX VS PREDICTED ICEBERG FLUX

Region : data_test Size : 10 x 10
TIME AVERAGED APPROACH Latitude : 45 to 90 Deg. N Longitude : 10 to 100 Deg. W
issue Date : January 1st Run Date : 12:28:35 26-Jan-93
NUMBER OF ENDING MLR Equation # 2
PARAMETER MONTHS IN ain) r
] Predictor % _Months Ending_In
700 MB HEIGHTS S DECEMBER S .-.58 H700 (Walsh & NCAR Joined) H December  A(S5)
;88 Hnmggrgl{mml % gCIOBEgn 2 :-gz K700 (Valsh & NCAR Joined) 2 October  A(3)
MEAN SER_LEVEL anscmuqksms 4 DchBCmBBm 5 ‘a5 D700 (From J1000 & J700) 2 December  A(4)
MEAN SEA LEVEL PRESSURE 2 JANUARY 1 -.49 Mean Sea Levet Pressure 3 December  A(5)
Mean Sea Level Pressure 2 January AC1)
Correlation Coefficient (Observed vs Predicted): .81
RA PRED DELTA RANK Correlation Coefficient : .81 Composite Skill Index : .66
YEAR OBSERVED PREDICTED (P-O) (P-O 7 SD) OBS NK RANK
— YEAR OBSERVED PREDICTED (P-0) 0BS RANK_ PRED RANK DELTA RANK
1966 0 84. 84. 20 1. 10. g 1966 0. 85. 85. 1. 9. 8.
1958 1 165. 164. 40 2. 11, . 1958 1. 187. 186, 2. 13. 1.
1952 13 337 322 _5e 3 13- 18- 1952 15. 8. 303. 3. 18. 1.
1980 23. 18. =5. -.01 s. 6. 1. 1977 2. 0. -22. 4 3. 1.
132; %2 %gi %gg. 21 g- }g 1é~ 1980 23. 32. 9. 5. 7. 2.
1 . . . .
1389 23 o 1oy ~1a 8 1 -7 1963 2. 217, 192. 6. 15. 9.
1955 61. -61 -.18 9. 4. -5. 1953 56. 213, 157. 7. 1. 7.
}g;g ;g 163. 3g fg }(1) lg. _g~ 1969 s7. 0. -57. 8. 2. -6.
1965 76.  S66. 490 1.19 12. 2a. 12. 1955 61 0. -61. 9. 5. 4.
1956 80. 306 226 .55 13. 18. 5. 197 7. 155. 82. 10. 12. 2.
1g;g lgi,, 2:738 I%g -.gg }g 15. -?- 1978 7s. 9. 20. 1. 10. -1,
1 . . . . .
1962 112. ~112 -.27 16. 2. -14. 1965 7 392. 516. 12 . 3.
1961 114. 168. 54 .13 17. 12. -5. 1956 80 339. 259. 13. 19. 6.
1976 151. 551 400 .97 18. 23. S. 1970 8s. 13. -72. %. 6. -8.
1979 182. 338. 156 .38 19. 20. 1. 1975 101 %3
1968 226. 71. -15%5 -.38 20. 9. -11. - . 142. 15. 16. 1.
1960 258. 28 -230 -.56 21. 7. -14. 1961 116. 291. 177. 16. 7. 1.
1954 31';’. g;:zi 26‘5 g% %% %? % 1962 122. o. -122. 17. 4. 13,
369. . . . ~-2.
}324 441. 213 -228 -.55 24. 14. -10. 1976 151. . 320. 18. 22. ‘.
1959 689. 543 -146 -.35 25. 22. -3. 1979 152. 373. 221. 19. 21. 2.
1973 ago. ;(l)g -}:zig —.Zaig gg %? g- 1968 226. 0. -226. 20. 1. -19.
1957 931. - -. . . . )
1974 1386. 1135, -251 -.61 28. 29. 1. 1960 8. . 183. 2. 8. -13.
1972 1584. 992. -592 -1.43 29. 28. -1 1954 312. 524. 212, 22. 2. 2.
1964 369. 362. -7. 23. 0. - -3.
1967 441, 142, -299. 2. " -13
MEA| . 88. . .
SI'DM DEV. 3?%. 332. 1959 689. 489. -200. 25, 2. -2.
VALUES 172 o 5 9 1973 850. 916. 6. 26. 28. 2.
MEAN OF ABSOLUTE VALU . . : 1957 931 &31 -100 27 2 -1
: “3% a7 . . . . . .
STD. DEV. OF ABSOLUTE VALUES 141 1974 1386. 1000. -386. 28. 29. 1.
1972 1584, 877. -707. 29. 27. -2.
TEGO! : SCREPANCY CLASS ERRORS: DISCREPANCY
CA RY ERE;Q?EN ogémvm) BETWEEN OBSERVED MEAN 287. 305.
AND PREDICTED CATEGORIES COUNT AND PREDICTED CLASSIFICATION COUNT STD. DEV. 413, 300.
MEAN OF ABSOLUTE VALUES 184, 5.4
0 16 [¢] ; STD. DEV. OF ABSOLUTE VALUES 128. 4.6
1 12 1 12
2 1 2 6
3 a CATEGORY ERRORS: DISCREPANCY CLASS ERRORS: DISCREPANCY
4 1] BETWEEN OBSERVED BETWEEN OBSERVED
2 g AND PREDICTED CATEGORIES  COUNT AND PREDICVED CLASSIFICATION COUNT
0 14 ] 7
1 14 1 14
2 1 2 6
3 2



of the utility of this forecast equation. Both incarnations of this test return one year with
Class Error = 1. The more recent case returns only two years with Category Error = 3, while
the former version returned four years in this error category. The rank differences for the five
most severe years fluctuate by no more than two units. These illustrated results, in company
with the results of many comparable tests not illustrated here, confirm the compatibility between
the 1986 version of LRIFS and the version which has emerged following the maJor upgrading
activities described in this report.

2.4.3 Compatibility Tests Using East Coast Sea Ice Hindcasts

Further confirmation of the compatibility between the current version of LRIFS and the
operational version reported to Ice Centre Environment Canada by Davidson (1992) is provided
in Table 2.6. In this instance, four different multiple regression combinations are tested for the
prediction of Grand Banks sea ice severity. Correlation coefficients, Category Error
distributions, Class Error distributions, and Delta Rank statistics are compared for each of the
four multiple regression cases, each for a different issue date. Over the past year, the
contributing data files for H1000, H500, and D500 have undergone considerable revisions in
term of source and time groupings of data (see Chapter 4.2). In spite of these changes to the
basic predictor data files, LRIFS returns acceptably compatible results in each of the four tests.
The pairs of Correlation Coefficients match to within 0.02 in Tests #1, #2 and #4, while Test
#3 presents a difference of only 0.09. Conspicuous in Test #1 is the large Delta Rank error in
the third most severe year. This shows as an error of -18 in 1992 and is reproduced as a
comparable error of -16 in 1993. In Test #2 the Category Error and Class Error distributions
are identical for the two cases. In this instance there is somewhat larger fluctuation in Delta
Rank. In spite of the Correlation Coefficient differences in Test #3 there is excellent
compatibility in all three other skill indicators. Finally, in Test #4, there is again a recognizable
pattern in the behaviour of each of the skill indicators for the two cases (1992 and 1993 versions
of LRIFS).

2.5 Isolating Useful Predictors

2.5.1 Problems with Artificial Skill

Attempts to develop skilful forecast equations from meteorological predictors, for any particular
ice predictand, always follow a basic series of steps. A geographical region is first selected, in
which to base the search for skilful meteorological predictors. Linear regression tests between
eigenfunction coefficient time series and predictand time series are used to isolate individually
interesting predictors. These are then combined in various groupings to test multiple regression
models. Chapter 2.2.2 above has introduced the Composite Skill Index (CSI) as a quantitative
tool for assessing the skill of both linear and multiple regression tests. With the introduction
of the CSI, and with advances in computing throughput, it has become practical to test virtually
every possible linear regression option, and likewise to test every possible multiple regression
combination if desired.

In a typical case, with no unusual restrictions, the number of possible linear regression tests for
a given geographical predictor domain, a given ice predictand, and a given issue date, could be
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Table 2.6 Comparison of Four Multiple Regression Predictor Combinations

Using LRIFS 1992 and 1993 Versions

Equation Predictand Predictors Resufts
Number index #mos End P #mos End 8(n) t Category Class Delta Rank
Test #1a ICEA 1 Jan |MSLP 1 Dec 1 067 112 8 14 7 1 0 0 18 11 4
1992 SAT 6 Dec 1

Sat 2 Dec 2
Test #1b 065 |13 8 i5 7 0 2 1 46 0 0
1993
Test #2a ICEA 1 Feb |D500 3 Jan 1 089 |15 6 14 8 0 2 1 1 1 5
1992 H500 2 Jan 2

H1000 2 Jan 1

H1000 5 Jan 3

SAT 2 Jan 1
Test #2b 089 {15 6 14 8 0 6 0 1 1 .2
1993
Test #3a ICEA 1 Mar |D500 3 Feb 1 091 |14 B8 17 5 0 6 0 2 -2 1
1992 D500 3 Feb 2

HS00 3 Feb 1

H1000 2 Feb 1

SAT 3 Feb 1
Test #3b 085 {13 8 15 7 0 1 2 2 0 0
1993
Test #4a ICEA 1 Apr  |D500 4 Mar 1 076 [14 8 13 8 1 14 4 0 3 3
1992 DS00 4 Mar 2

H700 4 Mar 1

MsLP 4 Mar 1

SAT 4 Mar 1
Test #4b 076 |12 10 9 12 1 3 1 2 4 4
1993
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as large as:

7 meteorological predictors
X 6 eigenfunction modes saved for each predictor
X 8 number of months contributing to predictor average
X 12 (or less) end month *

4,032 maximum number of linear regression cases

*  Not all cases are allowed to extend back a full twelve months in time. For the Beaufort
Sea, for example, November has been determined as the transition month between ice
seasons, so linear regression tests for say a July 1 issue date would extend back only eight
months to the previous November, and not 12 months to the previous July.

In any event, some few thousands of linear regression tests are executed for each
region/predictand/issue date combination. It has become common practice to retain up to ten
cases for each of the seven meteorological fields which yield the maximum CSI values, provided
that at least ten cases pass the equal-tails test for significance of the correlation coefficient
(Neville and Kennedy, 1966).

As this method evolved and was being assessed, it became apparent from many test results that
certain predictors were being retained which did not spontaneously have a reasonable physical
explanation. Illustrative of many such results encountered in the early phases of this work is the
example cited in Table 2.7. Viewed in conjunction with similar lists for earlier issue dates, it
is difficult to offer a plausible physical explanation for the apparent skill in predictors which
have both a long lead time and a high mode number. Thus, the two April a(4) predictors and
especially the January a(3) predictor in Table 2.7 were viewed with scepticism, even though
being retained by the automatic selection system.

With almost all linear regression tests plagued by some number of these questionable predictors
showing what could be artificial skill, it was determined to add another rigorous skill test to the
linear regression module of LRIFS. This Monte Carlo simulation test (described immediately
below in Chapter 2.5.2) is so computationally intensive that it cannot be invoked with every
linear regression test. Therefore, arbitrary but reasonable rules to control the execution of
Monte Carlo tests have been established as follows:

- a predictor from the list of ten largest CSI values is spontaneously retained on the list if
its end month is only one or two months earlier than the issue date.

- any predictor having an end month which is three or more months prior to the issue date
must be subjected to the Monte Carlo test.

-15 -




Table 2.7 Example of Linear Regression Results Including Questionable Predictors
In this example:
Region = Beaufort Sea 10 X 10 E
40°N to 90°N latitude
90°W to 180°W longitude

Predictand = Beaufort Sea Ice Area
1 month ending July

Issue Date = July 1

Linear Regression Results for 700 mb Height as follows:

Potential Coefficient
Predictor CSI I Duration End month Series
1 1 .68 2 June a(1)
2 .70 -.62 3 June a(l)
*3 .68 .64 1 April a(4)
* 4 .68 .61 2 April a(4)
*5 .64 .55 4 January a(3)
6 .62 -.58 1 June a(l)
7 .60 .60 4 June a(l)
8 .56 .58 5 June a(1)
9 Sl -.59 4 June a(6)

* It is difficult to physically explain these predictors with both long lead time and high mode
number.
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- a predictor from the list of ten largest CSI value is spontaneously retained on the list i
it employs eigenfunction mode 1 or mode 2.

- any predictor employing eigenfunction mode 3 or higher must be subjected to the Mont
Carlo test, independent of its end month.

2.5.2 Monte Carlo Techniques

To further assess predictors showing potentially artificial skill (as defined above), a rigorous
Monte Carlo test was added to the linear regression module of LRIFS. The implementation of
this test is described as follows:

- first, the standard approach to predictor selection for the given predictor and month is
undertaken, by regressing the ice area signal against each of the 48 a(n) series. Thus,
apparent predictors are identified. If any of these are for modes of the eigenfunction
which are greater than 2, or if any of the predictors have end dates which are more than
two months earlier than the issue date, then the Monte Carlo test is executed.

- for a given meteorological predictor field (MSLP, H1000, H700, etc.) and a given
month, there are 48 combinations of duration and eigenfunction coefficient which are
normally investigated to seek viable predictors. These 48 cases are illustrated in Table
2.8 below.

Table 2.8 Allowable Combinations of Duration and Eigenfunction Coefficient

Eigenfunction Number of Months Duration
Coefficient a(n) 1 2 3 4 b} 6 1 8
a(l)
a(2) This matrix defines 48 combinations of duration and
a(3) eigenfunction coefficient.
a(4)
ai5)
a(6)

- a "chance" distribution of CSI values is constructed. First, the ice area index series is
randomized. This random ice signal is regressed against all 48 of the above-defined
potential predictor series. The single largest of the 48 CSI values resulting from this
computation is retained. The process is repeated 100 times, each with a different
randomized version of the ice area series. This yields a population of 100 CSI values,
all derived from randomized ice signals.
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- the 95% threshold in that distribution of 100 CSI values is determined.

- for the questionable predictor to be retained, its CSI value must exceed the 95%
threshold value from the distribution of 100 CSI values generated by random ice signals.

Examples of the consequence of imposing the Monte Carlo test are illustrated in Figure 2.1.
The Figure comprises four cases, each of which involves an apparently skilful, but suspect
predictor, with the suspicions arising from the mode of eigenfunction being greater than 2, or
the end date being more than two months earlier than the issue date. In this early example, the
threshold for retention of suspicious predictors was set at 90% in the distribution of random CSI
values. This threshold applies to the results in Figure 2.1. Subsequently, as noted above, the
threshold was raised to 95% to tighten the condition for retention of predictors. It is noted that
in this example, three of the four illustrated examples fail the Monte Carlo test, while one (June)
passes.
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Figure 2.1
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2.6 Summary of Modified LRIFS System Operation

It is the purpose of the associated User’s Manual for LRIFS (Pinhorn, 1993b), to provide
comprehensive documentation for the guidance of system users. Repetition of such information
in this technical report is inappropriate. However, it is appropriate here to provide a summary
of the process by which predictive equations are derived, using the LRIFS system. Such a
summary if provided via Table 2.9.
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Table 2.9 Summary of the Process for Equation Generation in the Modified Long Range Ice Forecasting

System
Action Input Parameter or Range of Values
Taken By Computational Action Presently Supported
User Define the geographical region for the meteorological Allowable predictor regions are any square
predictor grid. Once this highest level menu selection grid (composed of 5° latitude by
establishes a predictor region, the system allocates initial 10" longitude cells), dimensioned 6 X 6
space required for development and storage of forecast through 15 X 15, and located anywhere
equations, and all subsequent user choices pertain to this north of 20° N latitude in the northern
region. The LRIFS system now supports multiple hemisphere.
regions simultaneously, constrained only by total system
disk space.
User Choose meteorological predictors and the range of years Seven options are available, including:
for inclusion in the computation of eigenfunctions for
each predictor. - mean sea level pressure (MSLP)
- 1000 millibar geopotential height(H1000)
- 700 millibar geopotential height (H700)
- 500 millibar geopotential height (H500)
- 700-1000 millibar thickness (D700)
- 500-1000 millibar thickness (D500)
- surface air temperature (SAT)
Any continuous range of years, within the
available time range of data for each
parameter, is allowable. Different ranges
of years can be set independently for each
selected meteorological field, if desired.
User Select antecedent ice index as a predictor if desired. Any of the currently defined ice index
series can optionally be included in the
predictor list.
Automatic | Compute and store monthly means for each selected
meteorological predictor time series.
User Set the time grouping parameters for eigenfunction Options are 1 to 8 months ending January to
generation. December (maximum 8 X 12 = 96 cases),
or any subset thereof.
Automatic | Compute eigenfunctions for each selected predictor and
time grouping. Store the first six eigenfunctions with their
eigenvalues. Compute and store the eigenfunction
coefficient time series (a_), which is the information used
in linear regression tests against the ice index series.
User Select predictors for inclusion in linear regression tests. Options are any combination of the

meteorological and ice predictors identified
above. In a typical use of the system, the
first action for a newly defined region
would be to select all predictors and execute
all eigenfunction computations.
Subsequently, this selection option would be
used to investigate specific sets of
predictors.
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Table 2.9 (cont.)

User

Choose predictand series.

Options are any currently defined ice index
series.

User

Choose ice signal (predictand) duration and end month.

Duration options for sea ice are one month
or three months, while for icebergs the
duration is always annual. Options for end
month for the sea ice signal are region
specific. Allowable values currently include:

East Coast:
North  August through July
Middle August through July
South December through July
Gulf  December through July

Beaufort Sea:  June through October

Automatic

Execute every possible linear regression test between ice
predictand series and predictor series, as dictated by the
population of stored eigenfunctions, and the selected
predictor series. Execute Monte Carlo tests to filter
questionable apparent predictors. Construct and store
lists of the 10 best linear predictors as determined by
values of the Composite Skill Index (CSI).

Monte Carlo tests are executed if lead time
is greater than 2 months or if eigenfunction
mode is 3 or greater.

User

Define an issue date. This controls which lists of 10 best
linear predictors are included in the multiple regression
predictor search.

Allowable values are 1st day of any
calendar month.

User

Choose the number of linear predictors from each list,
which are to contribute to the multiple regression
predictor search.

Option is 1 to 10. Default is 5.

User

Define any exclusions for grouping of predictors in
multiple regression predictor search.

Use all or any combination of defined
predictors. Typical exclusions are:

- use one of MSLP or H1000 but not both
- use one of H700 or H500 but not both
- use one of D700 or D500 but not both.

Automatic

Execute all possible multiple regression tests using
allowable combinations of selected predictors. Construct
and store lists of the 50 best multiple regression equations
as determined by values of the Composite Skill Index
(CSI).

Select up to 3 equations from the 50 best list for
operational use.
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3. GEOGRAPHICAL DOMAIN FOR METEOROLOGICAL PREDICTORS IN THE
BEAUFORT SEA REGION

Previous east coast work (Davidson, 1992) has shown that variations in the choice of the
geographical domain for calculation of eigenfunctions, and hence for selection of predictors, can
have significant effects on the level of hindcast skill obtained. Determination of the sensitivity
of hindcast results in Beaufort Sea long range ice prediction, to the boundaries of the predictor
domain, was one objective of the present work. Thorough investigations have been undertaken
to assess the effect of predictor domain variability in the Beaufort Sea region, using eight
different predictor domains, defined as follows:

Region Name Latitude Range Longitude Range
7x7 60° - 90° N 110° - 170° W

8x8 55°-90° N 100° - 170° W

9x9 50°-90°N 100° - 180° W

10 x 10 E (east) 45° -90° N 90° - 180° W
10 x 10 C (centre) 45° - 90° N 120° - 210° W
10 x 10 W (west) 45° - 90° N 180° - 270° W
11 x 11 40° - 90° N 80° - 180° W

12 x 12 35°-90° N 80° - 180° W

The locations of the first four of these regions (7 x 7, 8 x 8, 9 x 9, 10 x 10 E) are illustrated
in Figure 3.1, while Figure 3.2 shows the locations of the three 10 x 10 regions. Regions
11'x 11 and 12 x 12 are not displayed, but are defined in the table above. Meteorological
predictor data are organized on grids spanning these regions, with data values available at 5°
latitude and 10° longitude spacing. All grids have redundant values for each longitude at
latitude 90°N.

Full sets of linear and multiple regression tests were undertaken for each of these regions, and
the highest ranked multiple regression equations were retained for each region, for one month
sea ice area prediction, commencing on each of July 1, August 1, and September 1. In this
evaluation, such equations are referred to as "Best" equations, associated with a particular region
and 1ssue date. These equations were then employed to assess predictor region variations in two
manners. Firstly, the equations were employed directly, and the hindcast skill results between
regions were compared for each issue date. In this configuration, the Best 7 x 7 equation was
used to produce hindcast results for the 7 x 7 region, the Best 8 x 8 equation was employed to
produce hindcast results for the 8 x 8 region, and so on. Results of this comparison, for the
months July, August, and September appear in the three panels of Table 3.1. If there is a
predictor region which has significant advantage in yielding skilful hindcasts, it should be
conspicuous in such a comparison. Similarly, regions yielding particularly poor hindcast results
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Figure 3.1

Selected Geographical Domains Used to Test Predictors in the Beaufort Sea Region
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Figure 3.2

Boundaries of Three 10 x 10 Geographical Predictor Regions




should be easily discriminated. In a second type of evaluation, the Best equations as defined
above were used to execute hindcasts across all regions. That is , each Best equation was used
as the basis for executing a hindcast in each of eight regions. The results are summarized in
Table 3.2 for July issue date, Table 3.3 for August issue date, and Table 3.4 for September
issue date. Each of these three tables summarizes hindcast results for as many non-redundant
Best equations as were available. Redundant equations result, for example, if say the Best 7 x 7
equation employs exactly the same parameters and eigenfunction coefficients as does the Best
11 x 11 equation for a particular issue date. If hindcasts are particularly sensitive to region, the
expected behaviour in this type of test should be that the region matched to the equation will
produce significantly better hindcast results than will any region not matched to the equation.

Incorporating information from each of the July, August and September tests summarized in
Table 3.1, two generalized conclusions are possible. Firstly, it is abundantly clear that the
10 x 10 W predictor region (centred over Siberia) is not appropriate for use in Beaufort Sea long
range prediction. The July CSI value for 10 x 10 W is only half the magnitude of its
counterparts for 10 x 10 E and 10 x 10 C. Similarly in August, the 10 x 10 W CSI value drops
below its counterparts. Secondly, there appears to be grounds on the basis of September
behaviour to discredit use of 12 x 12. Other than these two solid conclusions, it is noted that
7 x 7 consistently performs well, and that each of 7 x 7 through 11 x 11 appears to perform
adequately. The 10 x 10 W region centred over the Beaufort Sea itself marginally outperforms
the 10 x 10 C region which is displaced 30 longitudinal degrees to the west.

These conclusions are endorsed by the results appearing in Tables 3.2 through 3.4 The
10 x 10 W region is not usable, and the 10 x 10 E is consistently preferred over the
corresponding 10 x 10 C. The 12 x 12 is less attractive in most situations that the smaller
regions, and particularly returns poor hindcast results for September, as demonstrated in the
bottom panel in Figure 3.4.

It appears on the basis of these investigations, that the Beaufort Sea ice area hindcasts are largely
insensitive to geographical predictor region for the range of regions defined and aligned here as
7x7,8x8,9x9,10x 10 E and 11 x 11 (see Figure 3.1). Use of any of these regions as a
base from which to search for viable multiple regression equations is well justified. The
operational version of LRIFS now installed at Ice Centre, Ottawa, makes it very simple to
undertake further investigations of this nature. In Chapter 4.6 of this report, operational
equations based on the 10 x 10 E region are identified. Other operational equations can
similarly be defined with little difficulty from any of 7x 7, 8 x 8, 9 x 9 or 11 x 11.
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Table 3.1

Effect of Geographical Variation While Using Best Equation Source Matched to
Each Region
[ice Signal: 1mos July |
Equation Geographical Category Ctass Delta Rank
Source Reglon “r -csr Error Error Most Severe Cases
: 012 012234 54 3 2 1
[Best 7 x 7 | 7x7 | [ os oss] [13] e o] [el2] ] T 1 {]2 4[4[
{Best 8 x 8 ] 8x8 |} [ o78] o83 [1l10l o] [4] o] il T 1 [2f 4] 2] o
(Best9x 9 [ 9x9 ] [ o7 os [13[ 8]0l [o[s] [ T ] [s] o] 1[2]o
[Best 10x10E | 10x10E | [ o73] ce2] [13] 8l o] [wf [ 2] T ] [-] 4] 13] o
Best11x11 | 11x11 | [ o] or7] [s]1o o] [ofso] 2] T |1 [-4] 2] of 5] o
Best12x12 [ 12x12 | [ o72] o7e] [1sof o] [ofsol of T 1 [2] 2 o[ 4] o]
Best10x10E | 10x10E | [ o73] o8] [13] 8[ o] [12f 7[ 2] [ ] [F[ 1 ]3] o
[Best 10x10C | 10x10C | [o7s] oso] [s3[ e[ of [l o[ [ [ ] (22 o3[ o
Best 10 x 10W [ 10x10W | [ o047 o043] [e[12][ 3] [of e[ o] T ] [] 3 3[-7] 1]
[ice Signal: 1 mos August |
Equation Geographical Category Class Detta Rank
Source Region Totese Emer’ Emor  MostSevers Cases
Best7 x 7 | 7x7 ] [ osg2f o3l [sl el o] [w2fol T T 1 [l ol of o]
(Best8 x 8 T 8x8 ] [ oss] 084 [ 6] 0] [el1a] [ T 1 [2[ 2] of s[4
[Best9x 9 ]| 9x9 | [ o8 o8] [1s[ 6o [of12] T T ] {ofo 1 ]2
(Best10x10E | 10x10E | [ o77] oss] [13] el o] [efxa] T T 1 [W]a] 4 [
Best12x12 | 12x12 | [ oes] oss] [sa[ el ol [ofs2l T T 1 [ [ ]4
(Best10x10E [ 10x10E | [ o77] oss] [13] 8] o] [e[wa] [ T 1 [4[4] o[ ]2
Best10x10C | 10x10C | [ o76] o8] [11]1of o] [7[a[ ] T 1 [ [ [ 1[4l
Best 10x 10W [ 10x10W | [ o0& o070] [sof1o] ] [aas] 2l T ] [of 2] of i[9
fice Signal: 1 mos_September]
Equation Geographical Category Class Delta Rank
Source Reglon "~ ~csr Error Error Most Severe Cases
012 01234 54 32 1
Best7x7 | 7x7 ] [os o8] [s7[ e[ o [w2l o]l T T 1 [l 2[-1]-
(Best8x 8 | 8x8 ] | oed ore] [1fwo] o] [e[w2f s T 1 [ofa] 12
(Best9x9 [ 9x9 ] [ o74] ors] [ss[ el o] [1sl6[ o T 1 [2[of 1[4
|Best 10x10E | 10x10E | [ o79] os4] [1s[ 6] o] [t of 2f [ ] [l 1 1[-2
Best11x11 [ 11x11 | [ ore] o7o] [s[sof o] [olwo] 2 T ] [2[ 4] of +[]
Best12x12 [ 12x12 | [ o3s] o4l [of10[ 2] [l of o [ ] [i[s[-13] 1] 7]
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Table 3.2 Effects of Geographical Variation for July Hindcasts, While Using Equation
Sources Which Are Not Matched to Each Region

lice Signal: 1mos July |

e ogmel L Cwmn dm | ome

0 1 2 0123 4 § 4 3 2 1

[Best7x7 | 7x7 | [Tos oss] [13] 8] o] [ef1z[ 1] [ | [S] 2 4[] o
I | 8x8 | [ o7 or] [11]1o] o] [o[1o] 2 [ ] [2[2] o[ 3] o
| | 9x9 .| [ o7e] om [of[2 [e[1]2f [ ] [2[2[o[<4[0
| | 10x10E | [o7e] ord] [11]1o] o] [e[1a[ 2 [ | [ 2] o[ 4] o
I I 1x11 | [orl orm] [a]o o] [o[1o] 2] [ ] [G] 2 o[ o
I [ 12x12 | [Co72| o7 [1[1o] o] [ofso] 2] [ | [2[ 2] of 4]
{Best 7 x 7 | 10x10E | [ oze[ o7 [11]1o] o] [&[11] 2] | | [2] 2 o[ <[ d
[ [ 10x10C | [o7s[ oso] [13[ e[ o] [wa] o] 1] [ | [=2[ 2] ol 3] o
I | 10x10W | [ o4r] o43] [e[12[ 3] [s[ e[ a] [ | [ af-a] 7] ]

Equation Geographical Category Class Delta Rank

Source Region Tovesr emor ) 4 ST, MostSevere Cases
{Best 8 x 8 | 7x7 ] [Cos] os7] [1Jwo] o [l o[ [ [ ] [G[al 4[] o
| | 8x8 | [ o7 oss [11o] o [1[ e[ ] [ | [ 4] 2 d
B | 9x9 | [ozel o8 [13[ e[ o [[ o ] [ ] [ ]
| | 10x10E | [ o7s[ os1] [13[ e[ o] [m[ o[ [ | [ ]+l o
| [ 11x11 | [or[ oso [w3[ e[ o [o[n] ] [ | [ o[ 4[] o
I | _12x12 | [ o7 ol [13[ 6] of [efwo[ 2] [ ] [=[[1[=[d
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Table 3.2 (cont.)

Equation

Geographical

Category

Class

Delta Rank

Source Region ™ csI® Error Error Most Severe Cases
0 1 2 012 3 4 5 4 3 2 1

(Best 9 x 9 | 7x7 | [Lo7s] ors] [12] e[ 1] [ofual ] T ] [&[ 2] of 2] o
| | 8x8 | [ o] os] [13[8[ o] [o[t]d] [ ] [« ]2
I | 9x9 | [Torel oeo| [13[ e[ of [of[ua[ o[ [ ] [S[ ]2
| | 10x10E | [ o7s] o7 [11[1o o] [e[12f 1] [ ] [] 2] of 3] o]
1 I 11x11 ] [om[ o] [f1of o] [F[sa[ ] T 1 [ [ 13[4
| | 12x12 ] [ o73] o7s] [wfo] of [e[a2l o] T ] [S[ 2] of-3] o

Equation Geographical Category Class Delta Rank

Source Region " "CSI" Error Error Most Severe Cases

0 1 2 012 3 4 5 4 3 2 1

Best10x10E |  7x7 | [ o7 o7e] [12[ e[ 1] [l ol 4] [ | T[] ] -3 o
| | 8x8 ] [ o74 os3] [13[ 8] o] [ o[ [ [ ] [l [ 3] o
l L 9x9 | [ o7s] oss] [13[ e of [s2l e[ [ [ | [l [ +][3] o
l | 10x10E | [ o73] os2] [13[ e[ o [w2l 7/ 2 T ] [a] [ ]3] o
I [ 11x11 | [ o73] osd [13[ e[ o [13 e[ 2] [ | [ of 1[5] o
[ | 12x12 | [o7a] os2 [13[ e[ o] [s3[ el 2] | | [ of 1] 3] o
[Best10x10E | 10x10E | [ o73] osd [13[ e o [ 7/ 2 [ ] [A[ 4] 1] o
I | 10x10C | [ oses] oe3] [13[ 6] 2] [0l of 2f [ 1 [2[ 4] ]3] o]
[ | 10x10W | [ oso] oso] [1o] 6] 5] [12 ] [ [ ] [o] of 1] o
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Table 3.3 Effects of Geographical Variation for August Hindcasts, While Using Equation
Sources Which Are Not Matched to Each Region
[ice Signal: 1 mos August |
Equation Geographical Category Class Delta Rank
Source Region "~  -csI® Error Error Most Severe Cases
012 01234 5 4 3 2 1
(Best 7 x 7 I 7x7 | [ o2 oe3] [1s] 6] o] [12f of | | | [-] of of 1|1
l [ 8x8 | [ o7 o064 [13] 6] 2] [40l of 2] [ | [ 2l -1f 1] 4] 3]
[ T 9x9 | [ oes] oso [12] 6] 3] [10] o] 2] [ ] [ 2] of 2| of 5
I [ 10x10E | [ oes| ose| [12] 6] 3] [of1o] 2] | | [ 2f 2] 2| of ¢
B [ 11x11 ] [ oes] oss|] [12] 6] 3] [el1] 2] [ ] [ 2 3| 2| of
( [ 12x12 | [ oes] ose] [12] 6] 3| [ 712 2] | | [ 2 2| 2[ o]
Equation Geographical Category Class Delta Rank
Source Region ™ “CsI Error Error Most Severe Cases
012 01234 5 4 3 2 1
[Best 8 x 8 [ 7x7 ] [ ose o83 [13] 8]0 [ [ T ] [2 2] of 1[4
| | 8x8 | [ ose| osa] [1s[ e[ ol [efsa] | [ | [-2| 2] of 1[4
I | 9x9 | [Lose[ oss] [1s[ e[ of [gf1a] [ [ | [2f 1 +f 1[4
| | 10x10E | [ oss[ ose ([13[ 8[ of [ef1a] | | | [-2f ¢f 1] 1[4
l | 11x11 | [ os4| o84l [13[ 8l of [&f1a] | | | (-2 1] 1] 1|4
| [ 12x12 | [ oes] o84 [13] 8 ol {&[13] T T | [2f 9] 1] 1] 4]
Equation Geographical Category Class Delta Rank
Source Region = =CsI" Error Error Most Severe Cases
012 01234 5 4 3 2 1
[Best9x 9 [ 7x7 ] [ oes] oss] [13[ 8] o] [12] o] [ | | [2 ol 1] 1] 4]
I | 8x8 | [ osf oed [13[ e of [ofrz] T [ | [2f 4 1] 1]
I | 9x9 | [osf oss] [1s[ e[ o [of12l [ [ | [of of 1 4[]
[ [ 10x10E | [ o79] os2] [13[ 8] o [ef1a] [ [ | [2f -] 1] 1]
l [ tix11 ] [ o7 o7 [nfso] of [efs2] 4] | | [ 2 4| 1] 1]
I | 12x12 | [ o7e] o7 [nfwol of [8ls2] o] T | [ 2 4 1] 1] 3]

-30 -



Table 3.3 (cont.)

Equation Geographical Category Class Delta Rank
Source Region sl Error Error Most Severe Cases
012 0123 4 5 4 3 2 1
Best10x10E |  7x7 | | os82] o073} [45] 4] 2] [11]1o] T T ] [ of 4] 4] 2]
| | 8x8 | [ ors| o83 [14] 6 1] [aa]so] | [ | [ of 1] 1] 2
I [ 9x9 | [ oso oss] [1a] 6] 4] [ofa2al T T 1 [a] of 1] 1]2]
I | 10x10E | | o77] oss] [13] 8l o] [8l4a] [ T 1 [ 4] ] 4] [
| | 11x11 | [ o7s] o079 [43[ 8l o] [ o1 af [ 1 [2f 2] 4] 4]-g]
[ [ 12x12 | [ o7a] o78] [13] 8] o] [el1a] 2] T ] [2f 2] ] 1[4

Equation Geographical Category Class Delta Rank
Source _ Region mpe oSl Error Error Most Severe Cases
012 01234 5 4 3 2 1
Best 10x10E | 10x10E | | o77] oss] [13[ 8 o] [afsa] T T 1 [ 4l 4] 179
| | 10x10C | [ o7 oze] [11]1o] o] [e[1a] 2] T ] [l 4[] 4]
I | 10x10W | [ o048l o047] [11] 6] o] [s[1a] 2] T | [-a]-13] 4] 1] ¢
Best 10x10C | 10x10E | [ o7e] os2] [w3] 8] of [o[11] 4] T 1 [of 4] 1] 1]l
| [ 10x10C | | o76] oso] [11]10] o [ 7fsa] 4] [ ] [ of 1] 1] 1] -6
| [ 10x10W | | os1] oe7] [8l12] 4] [ s[4 2] T 1 T[] 4] 1] 4] ]
Best 10x10W ] 10x10E | [ o7s] o7s] [11[10] o] [ e[s2] s] [ ] [-2] 2 of 1] 9]
[ | 10x10C | [ o73] oes] [8l12] 1] [ef1a] 1] T |1 [3] 2] of 1] 4]
| | 10x10W | [ os3] o7 [10[10] 1] [4[1s] 2] T | [ of -2f of 1] -3

Equation Geographical Gategory Class Delta Rank
Source Region 'eovesr Ewor . Ewor  MostSevere Cases
Best12x12 [ 7x7 | [ os7] o84l [13[ 8o [ofs2] [ [ ] [2f 2f of 1[3
I | 8x8 | [ oss] o8] [41J1o] o] [so[ad] T T ] [s[ 2] o 1[4
L | 9x9 | [ oss] ossl [13[ el o [wofss] T T 1 [2f o[l
[ | 10x10E | [ oss| oss] [13][ 8] of [aolsa] [ T | [2[ 1] ] 1]
| | 11x11 ] [ oss] os3 [13] e[ o] [of12] T T ] [2f 2] of 1]
[ | 12x12 | [ oss| oss] [13] 8l o] [ofs2] T T ] [2] 4] 9] 4l 9
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Table 3.4

Effects of Geographical Variation for September Hindcasts, While Using Equation
Sources Which Are Not Matched to Each Region

lice Signal:

1 mos September]

Equation Geographical Category Class Delta Rank
Source Region e S Error Error Most Severe Cases
01 2 0123 4 5 4 3 2 1
[Best 7 x 7 {  7x7 | [ oss] osdl [17] 4o [w2f o] [ T 1 [ o] 4] 2f 4] 4
| | 8x8 | [ o7l or] [15] el o] [12[ 5] 4] [ ] [ 3] 7] 2] 4] 49
[ 1 9x9 | [ oeo] oes] [15] 6] of [40 o 3] | | [ 3[-10] 2] -1] 4
| | 10x10E | [ oes] oe4d] [12] 8] 1] [1] 73] T ] [ 3] ] 2] -1] 5
| | 11x11 | [oss] o61] [10[10[ 1] [o[ 8l 4] T ] [ 2] -of 2] of 6
L | 12x12 | [ oe3] oso] [1o[10] 1] [1o] [ o] [ ] [ 2] o] 2] of
Equation Geographical Category Class Delta Rank
Source Region " CsIt Error Error Most Severe Cases
01 2 012 3 4 5 4 3 2 1
|Best 8 x 8 [ 7x7 ] [ o7 o74 [11]10] o] [7[n[ 3] T ] [ 2[ =] o] 1] 9
| |  8x8 | [ oed] o76] [11]w0] o] [s[12f 3] [ | [ of =] o[ 1] 2
| | 9x9 | [Los7] ozo] [10of10] 1] [e[12[a] [ ] [ s 1] 1] =2
[ | 10x10E | [ os4 oses] [1of1o] 1] [l 3] T ] [« 3] o] 1] 3
[ I 11x11 ] [[oe osd [of1o] 2 [t 3] T ] [of = [ 1] 3l
| | 12x12 | [ os1] os4] [of10] 2] [ef1] 3] [ ] [ of 2] 4] 4] 5
Equation Geographical Category Class Delta Rank
Source Region " “Cs Error Error Most Severe Cases
01 2 012 3 4 5 4 3 2 1
[Best 9 x 9 | 7x7 ] [Toed] osdl [1] 8] 2] [ofwo] 2] T ] [ of of o] 4] 7]
[ [ 8x8 ] [ or] o7 [13] 8o [9f o[ 3] T 1 [ 2 of 2] of 4
| | 9x9 | [Lord] o7l [1s] e[ o [l e[ o T ] [ 2 of o[ 1] 4
| | 10x10E | [ o74] o78] [13[ e[ of [of e] o] T 1 [ 2f 4] 4] 1] 3
l I 1x11 ] [Corol oro [12[ e[ 4] [o[ e[ of [ ] [ 3l 2 of 1[ 3
I | 12x12 | [ o70] o70] [12] e[ 4] [ol el ] T ] [ =3[ 2] of 1] 3
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Table 3.4 (cont.)

Geographical Category | Class Delta Rank
Source Region mper CS Error Error Most Severe Cases
0 1 2 012 3 4 5 4 3 2 1
[Best10x10E | 7x7 | [ o oed [17[ 2] 2] [sa[ o a] [ | [3[ 2] 2 o] 3
| | 8x8 | | o] o7s] [13] 6] o] [11] 8] 2] T | [ 3] o] 2] 1] 9
I [ ox9 | [ o7 o] [1a] e[ d] [o[] [ T 1 [ 2 4] 2 of 5
[ | 10x10E | [ o7s] o84 [15[ el o] [1o] of 2] T ] [a] 2 1] 4] 2
[ [ 11x11 ] [o7e] o7l [s2] 8 4] [sof e[ 3] [ 1 [ 4] 6 1] 1 2
| [ 12x12 B [ o7a] o73] [12] 8] 4] [1o] 8[ 3] | | [ 1] | 1] 1| 2}
Equation Geographical Category Class Delta Rank
Source Region eGP Error Error Most Severe Cases
0o 1 2 0123 4 5 4 3 2 1
Best11x11 [ 7x7 | [ oe9] oss] [13[ 6] 2] [of1o] 2[ [ 1 [ o] of 1] -1]-10]
I | 8x8 | [ o7l o77] [1s] el o] [1o] o 2] [ ] [ o[ ] 2of 4] ¢ °
| | 9x9 ] [ o7 ore] [15[ 6] o] [1[ [ a[ T 1 [ 3] of of 1]
( | 10x10E | [ o77] 077] [43] 8f o] [1of o[ 3] T | [ af 2] of 4] 3
| | 11x11 ] [ o] or] [11]10] o] [of1o] 2] T ] [ 2f < ] 1] 4]
| [ 12x12 | [o77] o7e] [1]1of o] [ofsof 2] T 1 [ 2f -s] 4] 4] 4]
Equation Geographical Category Class Delta Rank
Source Region e mesIt Error Error Most Severe Cases
01 2 0123 4 s 4 3 2 1
Best12x12 [ 7x7 | [ o28] o3s] [tz 1] [e[ /[ 6] T | [ 8] 2 5[ 7] ¢
l | 8x8 | [ o033] oar] [1of1o] 1] [e[ o] ] [ | [ -] 1 -o -3 5
| [ 9x9 | [0l o [ld [l 1] (Rl
| | 10x10E | [ o31] o36] [10f e[ 3] [e e[ s] [ ] [ -2[ 6[-14] o] 5
l | 11x11 | [ o3s] o3s] [e[1o] 3] [ef 8 s] [ ] [ 4] -s[-13[ -1] 5]
I | 12x12 | [ o3s] o4o [of10] 2] [ of o] [ ] [ 4] -s[-13] ] 7]
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4. LONG-RANGE PREDICTION OF BEAUFORT SEA ICE SEASON SEVERITY

4.1 Beaufort Sea Ice Area Severity Index

A single ice area index has been employed in this work to characterize Beaufort Sea ice
occurrence severity. This index has been developed from digital versions of AES Beaufort Sea
area ice charts for the years 1960 to 1980.

These charts characterize ice abundance in the region from the North American mainland coast,
at about 68° N, northward to 75° N latitude. These ice charts span a longitudinal swath
extending from 120° to 160° W longitude.

Digital sea ice data acquired from AES occupy a 1.0° longitude by 0.25° latitude grid. Grids
exist weekly through the sea ice season in the region, but in the initial form, the data are
interrupted with many gaps in both time and space.

In preparation for calculating ice indices from this data set it was necessary to establish data
continuity in both time and space. Temporal averages were not problematic, because weekly
concentration values were arithmetically averaged to yield monthly ice grids. Missing weeks
posed little problem, as the appropriate average was simply calculated using three rather than
four weeks. There was no case encountered where these data gaps prohibited calculation of
reasonable mean grid values for each calendar month.

Spatial interpolation for missing grid values of ice concentration was accomplished using two
schemes. Persistence was used as a first method, wherever possible, by filling a single missing
grid concentration value with its counterpart from the preceding week. For time gaps greater
then one week in a given concentration value at a given grid point, it was elected to use monthly
mean values calculated across all available observations at that grid point to fill the second and
subsequent missing weeks.

In preparation for calculating ice area indices, values of sea surface area for each cell of the sea
ice data grid were also prepared. For coastal grid elements containing any land area, the
subsection of the grid cell representing sea surface was estimated.

Ice Area Index values are the summation of the ice area which exists in each grid cell of the
region over the desired time interval. The total ice concentration for a grid point is converted
to its corresponding ice area value by multiplying with the area of sea surface pertinent to in the
cell. The set of grids which constitute a month are then averaged, producing a single mean area
grid for each month. The set of monthly area grids are then averaged over the desired number
of months. All of the grid values which constitute a month are then totalled to produce the
desired ice area index.

Experience with EOF forecasting methods indicates that the highest skill is achieved when
attempting to predict an ice index series which has high variability. If there is particularly low
variability in the predictand series, the multiple regression models tend to degenerate to
predicting a near constant value, and mistakenly then appear to be somewhat skilful. In such
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cases, the multiple regression models loose sensitivity to their composition of predictors, and
any one group of predictors fares almost as well as any other. No true skill is really achieved,
because the signal being predicted has little variability in the first place.

The annual cycle of sea ice occurrence in the Beaufort Sea is such that some months could
demonstrate such low variability as to disqualify them from investigation with LRIFS. The ice
season is dominated by a long, winter season with near 100% ice cover, and virtually no
variability. Study of the available AES ice data confirms that this situation persists between
November and May in all years. The annual break-up of the southern Beaufort Sea pack can
commence in June, and the pack then retreats northward through July and August. The onset
of the winter ice season can commence as early as September, and certainly is well advanced
by the end of October in all years. Thus, the months with measurable variability in ice cover
extend from June to October, with both this first and last months likely to demonstrate less
flucuation in ice conditions than the summer months of July, August and September.

The ice index series employed in this work are graphically demonstrated in Figures 4.1(a) and
4.1(b). In the first panel (Figure 4.1(a)), monthly series for June, July, August and September
appear. In the second panel (Figure 4.1(b)) appears the corresponding monthly series for
October, plus the three month averages for intervals ending in August, September, and October.
These series are linked with the choice of issue dates and valid dates as described in Chapter 4.3
below. In each case, these illustrated series are sorted in ascending order to allow easy
assessment of the range of values present in the data. Thus, each graph represents a different
time sequence. The important observation is that the range of ice index values is suitably large
in all but possibly the June case, to justify the use of these series as predictands in the LRIFS
system. Variability is sufficiently low in June that the ablility to predict might be restricted,
simply by the nature of the predictand series.
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Figure 4.1(a) Beaufort Sea Ice Area Predictand Series
for 1 Month Ending June, July, August, and September
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Figure 4.1(b) Beaufort Sea Ice Area Predictand Series
for 1 Month Ending October, and 3 Months Ending August, September, and October
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4.2 Meteorological and Ice Predictor Fields

Rather lengthy discussions of the source of meteorological predictor data sets incorporated into
LRIFS have been provided previously by Davidson (1987) and Davidson (1992). The three
activities undertaken in the present project related to the meteorological predictor data sets
include:

- partial reorganization of source data for each parameter, to assemble long time series
(1951-1991) with as few concatenations as possible. The guiding principles in
assembling these long time series were to employ segments of maximum duration from
individual sources, to minimize the number of segments which had to be pieced together
to complete the full time series, and to ensure compatibility across all junctions between
fragments. These continuity tests included assessment of compatibility of the means of
connected segments, and most importantly, compatibility of eigenfunctions between each
connected segment.

- addition of a few months of 1991 data which had recently become available, thus
extending some parameter data sets beyond the dates which were reported by Davidson
(1992).

- expansion of these meteorological source data sets to span the entire northern
hemisphere, as described in Chapter 2.3.

- resolution of previously reported problems with the H700 data set (Davidson, 1992).

The present status of meteorological predictor data sets is summarized via Figure 4.2 and
Figure 4.3. In the first of these, the individual segments of available data, by original source,
are summarized. In the second, the concatenation of individual segments is illustrated to show
the present combinations of data sources which are implemented in LRIFS. In this latter
Figure 4.3, it is to be noted that the D500 and D700 series have been computed directly by
subtracting the H1000 series respectively from the HS00 and H700 series which are in current
use.
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Figure 4.2 Individual Meteorological Data Set Durations and Sources
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Figure 4.3 Meteorological Data Sets In Use Within LRIFS in Early 1993
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4.3 Definitions of Issue Date and Valid Date

Within LRIFS, allowable "Issue Dates" are aligned on the first of each month, assuming that
the corresponding forecast equations make use of predictor data through the last day of the
preceding month. For each "Issue Date" in the operational version of LRIFS, forecasts are
allowed for one month and three months into the future only. The end points of these allowable
forecast intervals are termed "Valid Dates". In the research version of LRIFS (see Pinhom,
1993b), greater flexibility is offered in the combination of "Issue Dates" and "Valid Dates".
The pracitcal set of "Issue Dates” and "Valid Dates" for operational use in the Beaufort Sea, is
illustrated in Figure 4.4.

Figure 4.4 Illustration of "Issue Dates” (I) and "Valid Dates”

MAY 1 JUN 1 JUL 1 AUG 1 SEP 1 OCT 1 NOV 1
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4.4 Antecedent Ice Severity Anomaly as a Predictor

Authors such as Chapman and Walsh (1991) have indicated that antecedent ice severity anomaly
alone is a viable predictor of Beaufort Sea ice conditions. The LRIFS system has the capacity
to incorporate antecedent ice severity with assorted meteorological predictors in multiple
regression combinations. Indeed, the best operational equations (Chapter 4.6) often incorporate
ice and meteorological predictors together. It is also instructive to assess the actual strength of
the ice predictors, in the absence of meteorological variables. To do so, linear regression
models were tested for a series of ice anomaly predictors as described in Table 4.1.

Ice area anomaly values for June through August were employed in various configurations to
assess their predictive capacity for ice conditions of one month duration, one to three months
later. These results (Table 4.1) clearly identify ice area anomaly as a strong predictor at least
one month into the future. The June, July, and August predictions respectively for July, August
and September (next immediate month) all return CSI values in excess of 0.7, and at worst
return Category Error = 2 values of 2. Single month ice anomaly data are far less effective in
predicting conditions two or more months into the future. In these cases, typical CSI values are
less than 0.5, and although the Category Error = 2 values are reasonable, the Class Error = 2
values in these cases tend to be in the range of 3 to 5, which relative to other hindcast results,
is large. Finally, skill levels are moderate when attempting to employ multi-month combinations
of ice anomaly data to predict one to two months ahead. In these cases (2 months July
predicting August and September, 2 months August predicting September, and 3 months August
predicting September), the CSI values range from 0.56 to 0.70. Again, however, the
Class Error = 2 values tend to be uncomfortably large.

This exercise has been important in identifying inherent skill in antecedent ice area anomaly as
a predictor of sea ice area in the Beaufort Sea region. As noted above, the best operational
consequence of this fact is obtained by mating sea ice anomaly with strong meteorological
predictors.
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Table 4.1 Effectiveness of Antecedent Ice Area as a Predictor of Ice Area in the Beaufort Sea

Antecedent Employed to Predict: Category Class Delta Rank
Ice Area Predictor “rr “CsI” Error Error Most Severe Cases

01 2 012 3 4 6 4 3 2 1

|Eearea1monlh June llcearea1monthuty I I 0.77] 0.67J I13I GI 2‘ I1OI11I I | ] [ -3[ 0] -2[ Ol 0]
[icoarea 1 month August | [ o049] oa49] [10o] 8] 3] [ 7] 3] [ | [Lal10l 2] 4] 4]

[ice area 1 month September] [ 0.41] o0s51] [10[10] 1] [ o [ [ | [ o 2 -2[ 1]-14]

[ice area 1 month July  |icearea 1 month August | [ 0.77] o67] [1s] 4l 2] [7[1al [ [ ] [ o 6] of 1] 4
[ice area 1 month September] | 048] o04s] [ 8[10] 3] [ & 8] 5] | | [ -] 2| of 115

[ice area 1 month August [ice area 1 month September| [ 0.73] o071] [12] 8] 1] [o[ o[ 3] | | [ 4] 3] of of 4

[ice area 2 months July  Jice area I month August | | 0.7] os1] [11] 8 2| [ 7[12] 2] |
l

[ico area 1 month September| [ 0.48] oss] [12] 8] 1] [ ] 7] s
llce area 2 months Auguslllce area 1 month Septemberl [ 0.66] Oﬂ] | 10] 1OJJ [ 9[ 9] 3I I l [ -1] 31 OI OI -7]
[Ice area 3 months Augustllce area 1 month SeptembeLl I 0.64l 0.7] [ 9] 12] I [ 9] 9[ 3I I I r-Zl 2] 0[ 1‘ -7|
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4.5 Effectiveness of Forecast Equations for Months Later Than Intended Issue Date

Consider a given geographical predictor domain, a particular ice predictand, and an associated
issue date. Procedures described above in Chapter 2 can be executed to insolate a number of
skilful multiple regression forecast equations. It would be instructive to know whether or not
such equations retain any skill when used to predict ice severity in months later than the month
for which the equations were initially selected. One complete example is provided here to
investigate this question.

The selected region is 10 X 10 E which extends 40°N to 90°N latitude and 90° to 180°W
longitude. Standard procedures were followed to generate lists of viable multiple regression
equations (using meteorological predictors only) for three ice predictand/issue date combinations
as follows:

Ice Predictand Issue Date

1 month ending July July 1

1 month ending August . August 1

1 month ending September September 1

One sample equation, showing high skill, was then selected from each of these three
combinations. The selection of these equations was based solely on skill: the presence or
absence of common individual predictors in the multiple regression sets did not influence which
equations were chosen to contribute to this comparison. The chosen equations were then
employed to hindcast ice severity in the month for which the equation was designed, and also
in all subsequent months of that same ice season, through October. The actual equations tested,
and the hindcast months for each of these equations, are identified in Table 4.2. This table is
a guide to the individual results which subsequently appear in Tables 4.3(a) through 4.3(c).

These latter Tables 4.3(a) through 4.3(c) present hindcast results for equations with July 1,
August 1, and September 1 issue dates. The July equation (Table 4.3(a)) is employed to predict
July, August, September and October conditions. Similarly, the August equation (Table 4.3(b))
predicts ice area for August, September and October, and finally the September equation (Table
4.3(c)) predicts September and October conditions only.

The nature of the results is consistent across all three months tested (Table 4.3(a) to 4.3(c)).
Equations which work well in the month for which they were designed, invariably deteriorate
significantly if applied in subsequent months. These equations are not stable for predicting ice
conditions in later months. The deterioration in skill is evident in virtually all of the indicators,
and is well characterized in the Composite Skill Index. A summary of all four cases in
Figure 4.5 clearly shows that in every instance, the level of skill drops as equations are applied
in months later and later than the intended issue date. This illustration suggests that it is wholly
inappropriate to use equations developed for a specific ice predicand at a specific issue date, to
predict ice conditions at later issue dates.
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Table 4.2  Equations and Predictands Involved in Equation Effectiveness Tests
(This Table is a guide to the results prestented in Table 4.3)
Equation Employed 1 month July | 1 month Aug 1 month Sept | 1 month Oct
for prediction of:
Equation
Derived for use with Equation use 1 | Equation use 2 | Equation use 3
July 1 issue date to month early. months early. | months early.

predict 1 month July
ice area:

MSLP 1 June a(l)
H700 5 June a(l)

Table 4.3(a)
Line 1

Table 4.3(a)
Line 2

Table 4.3(a)
Line 3

Table 4.3(a)
Line 4

Derived for use with

Equation use
as intended.

Equation use

Equation use 1

Equation use 2

August 1 issue date to as intended. month early. months early.
predict 1 month

August ice area:

MSLP 7 July a(l) Table 4.3(b) Table 4.3(b) Table 4.3(b)
HS00 3 July a(?) Line 1 Line 2 Line 3

SAT 1 July a(2)

Derived for use with Equation use Equation use 1
September 1 issue as intended. month early.

date to predict
September 1 ice area:

H1000 2 August a(l)
H700 1 July a(l)
SAT 1July a(2)

Table 4.3(c)
Line 1

Table 4.3(c)
Line 2
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Table 4.3 Effectiveness of Forecast Equatlons in Predicting Ice Area in Months Later than
the Intended Issue Date
Table 4.3(a) Use of Equations Derived for July 1 Issue Date
to Predict Conditions July through October
Muitiple Regression Predictors: MSLP 1 mos June a(t)
H700 6§ mos June a(1)
Equation Equation Category Class - Delta Rank
Intended to predict: Employed to predict: “rr "CsI Error Error Most Severe Cases
0t 2 01 2 3 4 5§ 4 3 2 1
[ice area 1 month July [ice area 1 month July | | o73] os2] [13] 8] o] {12] 2] | | (] 1] 4] o] o
liceareatmonthaugust | [ 053] oao] [ o] 8] a] [6[12] 3] T | [ 2[as] 1] 1] 4
lice area 1 month september | [ 0.26] 039] [e[12] 3] [o] [ s [ ] [a3] af 4] 1[8]
lice area 1 montn Ooctober | [ 025] 03s] [10] 8] 3] [10] 6] 5] [ | [ 4] 3] o8] 4
Table 4.3(b) Use of Equations Derived for August 1 Issue Date
to Predict Conditions August through October
Multiple Regression Predictors: MSLP 7 mos July a(1)
H500 3 mos July a(1)
SAT 1 mos July a(2)
Equation Equation Category Class Delta Rank
intended to predict: Employed to predict: “r  “csit Error Error Most Severe Cases
o1 2 01 2 3 4 § 4 3 2 1
lliearea1 month August l!ce area 1 month August ] I 0.771 0.85] I13] 8] 0] [ 8113[ [ ] ] [ 1] -1[ 1| 1| 42]
[ice area 1 month september | [ 074] o078] [13] 8] o] [e[ o] o [ | [2 ] 1 1| -3
licearea1monthoctober | [ 053] os61] [3[ 8] of [ 7[s] [ | [ 3] 7 2] 2] <
Table 4.3(c) Use of Equations Derived for September 1 Issue Date
to Predict Conditions September through October
Muitiple Regression Predictors: H1000 2 mos August a(1)
H700 1 mos July a(1)
SAT 1 mos July a(2)
Equation Equation Category Class Delta Rank
Intended to predict: Employed to predict: "~ "csrr Error Error Most Severe Cases
01 2 01 2 3 4 § 4 3 2 1
|ice area 1 month September |ice area 1 month September | | _o0.79] o084 [18] 6 o] [10] o] 2] | | [ 4] 2] 1] 1] 2|
lice areat monthoctober | [ 0.58] os0] [12] 8] 1] [10] 8] 3] | | [ 3] &l 2] 4] -5
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Figure 4.5 Comparison of CSI Values
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4.6 Operational Forecast Equations

Methods described in preceding chapters, including rigorous Monte Carlo tests where required
(Chapter 2.5.2), have been employed in an attempt to derive viable equations for the long range
prediction of sea ice area in the Beaufort Sea. Using the 10 x 10 E predictor region (Chapter 3),
such attempts have been apparently successful for lead times of one month, but have been
largely unsuccessful for longer lead times. Most of the equations for one month lead time,
though exhibiting very high correlation coefficients and CSI values, yet contain one or more
predictors which individually have long lead times or high eigenvector mode numbers, or both.
Such predictors continue to lack an obvious physical explanation: nevertheless the decision has
been made to retain them in the recommended equations because they have met all of the
selection criteria. Particularly, they have exceeded the 95% threshold value in execution of 100
Monte Carlo simulations with random ice signal.

It is to be recalled that the multiple regression model selection process (Chapter 2.6) returns up
to 50 forecast equations, ranked by high correlation coefficient and CSI values, and numbered
1 through 50. These 50 equations are derived by testing all allowable combinations of the sets
of ten best individual predictors for each meteorological parameter. In the Beaufort Sea
application, the number of individual predictors returned from the linear regression model tests
for each meteorological parameter is typically very much less than ten, for each combination of
issue date and valid time. Hence, many of the 50 multiple regression equations involve almost
identical sets of individual predictors. Many such equations vary only slightly from others, due
to slight differences in the number or combination of individual predictors contributing to the
multiple regression model. It is after this list of up to 50 multiple regression equations is
compiled that subjective judgement is required to select operational forecast equations from the
list. The fact that many of the 50 equations employ very similar combinations of individual
predictors allows the possibility that equations appearing far down the list of 50 might be
selected for operational use, without displacing equations having much greater apparent skill.

The subjective judgements imposed in selecting the operational equations listed in this chapter
for Beaufort Sea use are based on the following principles:

consistent with east coast precedent, the decision has been taken to list up to a maximum
of three equations for any combination of region/issue date/and valid date,

- up to two of these three equations are to employ meteorological predictors only,
- one of the three equations is to employ antecedent ice anomaly as a predictor,

- where possible, viable equations are sought which do not incorporate early season
individual predictors, or predictors with large eigenvector mode numbers,

- where it is necessary to incorporate early season and/or high mode predictors, an attempt

is made to minimize the number of these which contribute to the multiple regression
model.
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Applying these principles, it has been possible to compile operational forecast equation lists for
the Beaufort Sea for only four circumstances, described as:

July 1 issue date to predict one month ending July ice area

August 1 issue date to predict one month ending August ice area
September 1 issue date to predict one month ending September ice area
July 1 issue date to predict three months ending September ice area.

No other combinations of issue date/valid time for the 10 x 10 E region have yielded viable
forecast equations.

The selected operational equations appear in Tables 4.4(a) through 4.4(d), spanning the four
cases outlined immediately above. In each case, up to three equations appear, with the last one
of these incorporating an ice parameter as a predictor. Table 4.4 does not purport to rank the
skill of the three equations in any group: these are simply judged to be the three best of up to
50 equations which have been returned from the automated selection process. The first column
of Table 4.4 indicates the equation number from the 50 equation multiple regression list. The
second and third columns provide the CSI values and the correlation coefficients. Thereafter,
the individual predictors contributing to the multiple regression model are listed.
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Table 4.4 Operational Forecast Equations

(a) Issue Date: July 1
Predictand: Ice Area One Month Ending July
# CSI R Pred. Ending Months Cocfficient
9 0.91 0.85 MSLP 1 Jun a(l)
H700 5 Jun a(l)
D500 2 Nov a(2)
1 0.93 0.90 MSLP 1 Jun a(l)
H700 5 Jun a(1)
D500 1 Nov a(2)
ICEA 1 Jun
(b) Issue Date: August 1
Predictand: Ice Area One Month Ending August
# CSI R Pred. Ending Months Coefficient
1 0.98 0.96 SAT 4 Feb a(4)
H1000 4 Feb a(4)
H700 5 Jul a(l)
D500 2 Nov a(2)
22 0.97 0.95 SAT 1 Nov a(s)
MSLP 5 Jan a(d)
H700 1 Jul a(l)
D500 3 Jul a(l)
2 0.98 0.96 SAT 4 Feb a4)
H1000 4 Feb a(4)
H700 5 Jul a(l)
D500 2 Nov a(2)
ICEA 1 Jul
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Table 4.4 (cont.)

(c) Issue Date: September 1

Predictand: Ice Area One Month Ending September

# CSI Pred. Ending Months Coefficient I

1 0.94 0.93 SAT 1 Aug a4)
MSLP 6 Aug a(l)
H500 5 Feb a(3)
D700 2 Jul a(s)

4 0.93 0.89 SAT 1 Jul a(l)
H1000 3 Jan a(2)
H700 1 Jul a(l)
D700 2 Jul a(s)

35 0.92 0.88 SAT 1 Aug a(4)
H1000 2 Aug a(l)
D700 2 Jul a®d)
ICEA 1 Aug

(d) Issue Date: July 1

Predictand: Ice Area Three Months Ending September

# CSI R Pred. Ending Months Coefficient

5 0.92 0.88 MSLP 6 Jun a(1)
H500 3 Jan a(3)
D500 2 Nov a(2)

1 0.93 0.92 MSLP 6 Jun a(1)
HS00 3 Jan ai3)
D500 2 Nov a(2)
ICEA__ 1 Jun
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5. CONCLUSIONS AND RECOMMENDATIONS
The objectives of this work, as first presented in Chapter 1.3, can be simply reiterated as:

- to generalize LRIFS for use with hemispheric predictor files,

- to prepare hemispheric predictor data files,

- to prepare Beaufort Sea ice area data in the form of predictand time series, usable by
LRIFS,

- to automate the execution of simple and multiple regression tests,

- to develop operational forecast equations for predicting Beaufort Sea ice area severity,
and

- to report findings to ESRF and Ice Centre Environment Canada.

The work which has been completed, as reported in Chapters 2 through 4 of this document, has
met or exceeded each of these specific objectives. It remains the role and purpose of this
concluding chapter to discuss the findings and evolution of this work, both from the perspective
of a direct application of LRIFS for Beaufort Sea use, and from the broader perspective of
LRIFS as a research tool for ice prediction in Canadian waters.

Considering first the broad perspective, it is certain that this work has yielded structural changes
which represent significant improvements to LRIFS as a research tool. The generalization of
predictor fields to span the northern hemisphere, the organization of nearly 40 years of predictor
data on the hemispheric grid for seven meteorological parameters, the introduction of the
Cumulative Skill Index (CSI), the automation of linear and multiple regression model
procedures, the unanticipated introduction of the Monte Carlo screening process, and the total
rebuilding of the LRIFS user interface are all significant contributions. [Each of these
accomplishments contributes to the future utility of LRIFS. Coupled with this technical report,
the System Specification and Users Manual documents (Pinhorn, 1993a and Pinhorn, 1993b)
which were completed as part of this work, are the records of such accomplishments.

The work has been less successful in its goal to provide an operational forecast system for use
in the Beaufort Sea. The fact that no prediction equations with lead times greater than one
month have been identified is a unexpected disappointment, after similar approaches have offered
longer lead times, especially for icebergs, on the east coast. Even the equations which have
been selected (Chapter 4.6) continue to be plagued by one or more unusual predictors having
individual lead times of many months and/or having high eigenvector mode number. These
equations have been retained because they meet the conditions presently established for LRIFS
equation extraction; however, their long term utility remains somewhat questionable.

There are three specific research/development activities which are immediately recommended
as a means of improving confidence in the Beaufort Sea equations. These recommendations, and
the rationale for each, are individually described.

Firstly, it should be recognized that the 1960 to 1980 interval over which AES digital sea ice

data are available for the Beaufort Sea is statistically very short. The single most important
action which should be taken to improve LRIFS for Beaufort Sea operation is to digitize the
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relevant sea ice data for the years 1981 through 1992, thereby extending the predictand time
series by more than 50% in duration. This action should better define the real variability which
these hindcast models seek to reproduce, and should result in the derivation of more stable
predictive equations, if such exist. Extension of the predictand interval should also have the
desired effect of reducing the incidence of artificial skill in predictors.

Secondly, further investigations with the Monte Carlo model are advised, as a means of further
probing the long lead time and high mode predictors. At least the following two tests could be
useful:

- increase the number of random tests from 100 to 200 or more, to determine whether
these unusual predictors still pass the Monte Carlo tests, and

- increase the threshold value from 95% to possibly 98%, to determine whether or not this
change alters the number of predictors which pass the Monte Carlo test.

Finally, attention could be redirected to the choice of the geographical domain for predictor
selection. Results presented in Chapter 3 showed only slight variations in skill for equations
derived from regions 7x 7, 8x 8,9 x9, 10 x 10 E, and 11 x 11. The region 10 x 10 E was
employed in deriving the operational equations which are tabulated in Chapter 4.6. 1t is
recommended that the entire equation extraction process be repeated, using the small 7 x 7
predictor region, and that the results of this work be carefully compared with the 10x 10 E
results included in Chapter 4.6 of this report, to further search for defensible, stable, Beaufort
Sea forecast equations.
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APPENDIX I Derivation of Empirical Orthogonal Functions

The essential features and merits of empirical orthogonal functions are well described by Walsh
and Sater (1981). Discussing the large volumes of sea level pressure (SLP) and sea surface
temperature (SST) data which they had prepared for use in studying sea ice/atmosphere
interactions, these authors note that,

"In view of the large volume of SLP and SST data, much of the analysis and discussion is based
on the dominant patterns of variability of the data fields. These patterns are empirical
orthogonal functions (EOF’s), which are also referred to as eigenvectors or principal
components. The first eigenvector of a set of data fields is the dominant mode of variability in
the sense that it describes a greater percentage of the variance of the data fields than does any
other pattern. [Each succeeding eigenvector describes a maximum of the variance that is
unexplained by the previous eigenvectors. The coefficient or amplitude of an eigenvector is a
measure of the extent to which that eigenvector pattern is present in a particular anomaly field.

Among the advantages of the eigenvector representation are the effective compression of the data
and the orthogonality (independence) of the patterns in space and time."

Derivation of Empirical Orthogonal Functions

It is desired to calculate the characteristic functions of a set of atmospheric data such as the
mean sea level pressure, 500 mb or 700 mb height, 500 mb - 1000 mb or 700 mb - 1000 mb
thickness, surface air temperature, or some other parameter. Suppose that the data are
symmetrically organized on a geographical latitude/longitude grid, and that data values at each
grid point are available over some routinely spaced series of times. Such values can be
considered as a regular time-series of (spatially varying) data fields. Let the data values for
points of fixed latitude define the rows of a matrix and similarly let the data values for points
of fixed longitude define the columns of this same matrix. One such matrix (or grid) exists for
each time.

By summing such matrices for a selected number of times and dividing by the appropriate
number of cases it is a simple matter to compute the time averaged or mean representation of
these fields. Then by subtracting this mean from the measured fields, it is possible to compute
anomaly fields.
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Such zero-mean anomaly fields (for any selected scalar parameter) can be represented as:

P =P (x,y,})

where x = x;, X;...Xq N1 = number of columns (longitude)

Y =Y Y2 Y2 N2 = number of rows (latitude)

t=1t,t.. .ty M = number of time intervals

Combining the two spatial dimensions into one spatial parameter x, the field can be represented

as:
P = P,

where x = Xx,, X;...

Following the arguments of Davis (1976), the time averaged correlation matrix of the anomaly
fields can be computed as follows:

M
R, =1Y P&t P(x,t)
M k=1

The matrix R; is dimensioned N;N, x N;N,.

The eigenvectors E (x) of R; are the empirical orthogonal functions of the data fields: the
associated eigenvalues \, describe the contribution of each eigenvector to the total variance in
the data fields. Those E (x) with the largest A, are the principal modes of the data fields.

While there exist N;N, eigenvectors, it is usually true that a small number of these describe a
large percentage of the variance in the signal. To what extent this is true can be determined by
examining the parameter \'; defined as:
m
A=Y A\, form< < NN,
n=1
(The primed quantities simply denote normalized values.)

As \'; approaches 1.0, the number of important eigenvectors (m) can be determined.

It is thus possible to reconstruct any of the observed fields P(x,t) as a superposition of E,(x).
Formally, '

m
P(x,t) = ¥ a,(E(x)

n=1
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Using the dot product operator, it is possible to determine the a(t) as: _

a,(t) = P(x,t) ® E,(x) n=I, m

The net result is a reduction of M grid patterns of observed data of dimension N;N,, to m time-
series of scalar coefficients a,(t), with m < < N,N,, and typically less than ten. These a_(t) are
the "coefficients or amplitudes” of the eigenvectors, as described by Walsh and Sater (1981).
They describe the extent to which the particular eigenvector is present in any particular measured
anomaly field.
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