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ABSTRACT 

The Gully Seismic Research Program is a multifaceted, multi-agency Canadian and international study on 
the impacts of seismic energy from oil and gas exploration on the marine mammals and acoustic 
environment at the continental shelf edge off Nova Scotia, Canada. The Program included studies of 
seismic sound levels, as well as behaviour, vocalizations, and distributions of marine mammals both in 
close proximity to the seismic vessels and in adjacent areas including The Gully submarine canyon and 
adjacent shelf edge of the Scotian Shelf, carried out in conjunction with exploratory 2D and 3D seismic 
programs in the area. Particular emphasis was given to theNorthern Bottlenose Whale (NBW), which has 
been declared an endangered species under the Species at Risk Act (SARA), and which congregates in 
The Gully and adjacent canyons on the eastern Scotian Shelf. Coordinated by Fisheries and Oceans 
Canada’s Centre for Offshore Oil and Gas Environmental Research (COOGER), studies took place from 
April to October 2003, before and during exploratory seismic programs on the upper continental slope 
carried out by Marathon Canada Petroleum ULC and Encana Corporation. Observations were made in 
several areas along the shelf edge, including the vicinity of Shortland and Haldimand submarine canyons. 
Study components included: 1) observations from seismic vessels of marine mammal distributions and 
behaviour; 2) dedicated ship-board and marine mammal monitoring before and during the exploratory 
seismic surveys; 3) calibrated monitoring of noise-levels and marine mammal vocalizations by 
hydrophones at several depths, including from instruments on the seabed, during seismic surveys; 4) 
modeling and confirmation of predictions of noise level attenuation with distance from the sound source; 5) 
acoustic monitoring of vocalizations from hydrophones on a seismic airgun array and concurrent 
observations of marine mammal distributions; and 6) development of data analysis approaches including 
neural networks to enable automatic detection and identification of whale vocalizations.  
 

RÉSUMÉ
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BACKGROUND 

Underwater sound generated during offshore exploration, development and production, is a contaminant of 
and potential hazard in, a subsea environment where many marine animals––in particular marine 
mammals including whales and seals––rely on sound for communication and for sensing prey and other 
aspects of their environment. Understanding of the effects of noise remains limited, however, the result in 
part of availability of resources and the difficulty and expense of carrying out useful studies, which are by 
necessity at an oceanic scale over extended periods.  
 
The Gully is a major submarine canyon on the edge of the Scotian Shelf southeast of Sable Island, and 
bordering Sable Island Bank, which has been the focus of hydrocarbon exploration and development and is 
the location of all hydrocarbon production to date on the Scotian Shelf. It has become increasingly well 
known as an area for whale sightings and in particular for a population of Northern Bottlenose Whale 
(NBW), an endangered toothed-whale species which inhabits the Canyon and whose distribution extends 
to the east to Shortland and Haldimand canyons on the eastern Scotian Shelf. Concern for impacts of all 
kinds on the northern bottlenose, including those from shipping, the fishery, and hydrocarbon-related 
activities, has led to formal recognition of the area around the Gully, first as a shipping exclusion zone, 
through voluntary oil industry recognition, and most recently as a Marine Protected Area, legislated by the 
government of Canada. The northern bottlenose whale population of the Scotian Shelf, for which the Gully 
is a major area of occurrence, has been declared an endangered species under the Species at Risk Act 
(SARA), thereby giving the species legal protection and increasing the importance of understanding the 
effects of and managing offshore activities in relation to it. 
 
The potential effects of sound generated by oil industry activities, in particular seismic noise from air-guns 
during exploratory surveys, has been an ongoing issue in connection with development of hydrocarbon 
reserves on the Scotian Shelf, particularly in relation to marine mammals, but also concerning fish and 
invertebrate fisheries, and endangered species such as sea turtles. Key areas for development remain in 
the vicinity of the Gully, both on the continental shelf and down the continental slope. Seismic surveys by 
vessels towing air-gun arrays have been carried out extensively on the Scotian Shelf, largely without 
incident, although the body of knowledge on impacts of seismic, in particular on marine mammals, has 
remained relatively small.  
 
The oil industry, the Environmental Studies Research Funds (ESRF), together with Fisheries and Oceans 
Canada, the CNSOPB, universities and conservation agencies and organizations, have been partners in 
efforts to study the effects of the oil industry activities, particularly seismic exploration, in significant areas 
for whales on the Scotian Shelf and to advance our understanding of the impacts of seismic on these 
species. One of the earliest initiatives of the offshore oil and gas industry was LASMO Resources (the 
operator of the Cohasset-Panuke development) expansion of their tanker exclusion zone to include the 
Gully in 1990. In anticipation of the establishment of the Gully MPA, the Canada-Nova Scotia Offshore 
Petroleum Board (CNSOPB) halted exploration activities for the last several years in areas immediately 
adjacent to core NBW habitat in the Gully. Proponents of the Sable Offshore Energy Project sponsored a 
class environmental assessment of seismic activities on the Scotian Shelf (Davis et al. 1998), and as a 
result of the Joint Panel Review recommendations, implemented a Code of Practice restricting overflights 
and vessel transit and by setting up an environmental effects monitoring program that included acoustic 
and benthic sampling sites near the Gully (Macnab 2005)(this volume). Macnab outlines the history and 
context of identifying and developing the need for protective measures for marine mammals in the Gully, 

                                                   
1 With the promulgation of the Gully MPA regulations in May 2004, any activities adjacent to or in the vicinity of the MPA that may 
cause harmful effects in the Gully are prohibited. 



GULLY SEISMIC RESEARCH PROGRAM  LEE, BAIN, AND HURLEY
  

 XIII 

and profiles industry efforts, as well as the undertakings by academic researchers and scientists within the 
Department of Fisheries and Oceans, Natural Resources Canada, the CNSOPB and conservationists to 
protect the Gully, culminating in the establishment of the Gully Marine Protected Area in 2004, and the 
formal legal status of the northern bottlenose whale under the Species At Risk Act (2002).  

PROJECT JUSTIFICATION 

Exploration interest near the Gully and further east near the Shortland and Haldimand Canyons, where 
northern bottlenose whales have also been observed, has recently intensified with the issuance of new 
licenses and the submission of proposals for seismic surveys in previously unexplored deep-water areas. 
Public demand to review the situation has also increased. It was in this context that in 2002-2003, the oil 
industry (Marathon Canada Petroleum ULC and Encana Corporation), and Fisheries and Oceans Canada’s 
Centre for Offshore Oil and Gas Environmental Research (COOGER), developed a research project, co-
funded by the Environmental Studies Research Funds (ESRF), to carry out integrated acoustical and 
biological studies to look at marine mammals and impacts of seismic in the Gully and adjacent Shortland 
and Haldimand canyon areas of the Scotian Shelf. The study, entitled “Acoustic Monitoring and Aerial 
Surveys in The Gully and Outer Scotian Shelf during Active Seismic Programs”––subsequently called the 
Gully Seismic Research Program––focused on seismic surveys carried out on two of Marathon’s leases on 
the continental slope of Nova Scotia, to the southwest of the Gully Marine Protected Area (MPA). The 
program was funded by DFO, theESRF, Marathon Canada Petroleum, Encana, Petroleum Research 
Atlantic Canada (PRAC), the DFO Species at Risk (SARCEP) fund, the Nova Scotia Department of 
Energy, and Natural Resources Canada. 
  
The scientific objectives of the Gully Seismic Research Program were to: 
 
1) Verify the integrity of acoustic modeling by direct field measurement in the acoustic far-field where sound 
levels are strongly influenced by water column structure and bottom sediment absorption characteristics; 
2) Obtain absolute measures of acoustic pulses of seismic origin within the Gully Whale Sanctuary; 
 
3) Correlate the presence of seismic noise with whale vocal behaviour, particularly those behaviours that 
can be discerned from the detailed study of whale acoustic vocalization patterns; 
 
4) Determine what marine mammals and other marine species are present in the area, their distribution 
and estimated density (as a proxy for abundance); 
 
5) Determine the distributions of NBW and other marine species within the Gully MPA that may be 
ensonified by this array and compare the distributions with those in adjacent areas that are not predicted to 
be ensonified; and 
 
6) Observe if gross changes occur in group size, swim direction and distribution of NBW and other marine 
mammals during exposure to seismic sounds. 

FIELD DATA COLLECTION AND ANALYSIS 

Measurements of intensity and characteristic seismic pulses were also to be used to confirm modeled 
predictions of attenuation of seismic sound with distance, carried out for the environmental assessment of 
the Marathon Petroleum Canada project, and to help refine safety zones for marine mammals based on 
established sound levels.   
 



GULLY SEISMIC RESEARCH PROGRAM  LEE, BAIN, AND HURLEY
  

 XIV 

Project Component
Viking out - no seismic ops
Viking out - siesmic ops
Geco Triton out - no seismic ops
Geco Triton out - seismic ops
DFO marine mammal observations
JASCO work
OBS recording - within Gully
OBS recording - mouth of Gully

AUGUSTAPRIL MAY JUNE JULY

 
 
Figure 1.  Timeline of seismic and research activity of the Gully Seismic Research Program. 
 
The first fieldwork took place in late-April to early May 2003 (Figure 1), prior to two industry seismic surveys 
which were to take place later in the year, with DFO researchers on the MV Strait Signet making acoustic 
measurements and visual observations of whale distribution and abundance, as well as water mass 
structure and sound velocity profiles from temperature and salinity measurements in the Gully and adjacent 
areas. Through May-June, EnCana Corporation conducted its 3-D seismic survey on the Stonehouse 
exploration lease, adjacent to Haldimand Canyon, using the M/V Geco Triton. In late-June to early-July, the 
MV Strait Signet again served as a platform for DFO observations, for industry consultants, and for 
deployments of ocean bottom seismometers with hydrophones to detect marine mammal vocalizations, 
thus overlapping with the active seismic program on the Marathon leases southwest of the Gully. The 
Marathon program ran from mid-June to October 2003, on the M/V Ramform Viking, surveying both leases 
(Exploration Licenses 2410 (Cortland) and 2411(Empire)) on the Scotian Slope. While the DFO Science 
team focused on monitoring far-field effects in The Gully and adjacent areas, the industry operators 
examined effects in the near-field around the seismic vessels. Both Marathon and Encana programs had 
on-board observers to conduct visual observations of marine mammals in the vicinity of the seismic 
operation, and the Encana program included an acoustic detection system for marine mammal 
vocalizations. Under the initial ESRF proposal, aerial surveys of marine mammal populations were to be 
conducted. This component of the study was subsequently omitted due to the lack of availability of suitable 
aircraft and subsequent cost benefit analysis that considered factors such as percentage of ‘lost-data’ days 
due to fog within the study region that would limit visibility.  
  
The environmental assessment for the Marathon Petroleum Canada seismic program included predictions 
of sound levels and a zone of influence; monitoring during the program was intended in part to verify the 
predictions of sound levels and marine mammal behaviour. The environmental monitoring program for 
Marathon carried on over the several months that the seismic survey was underway, from mid-June to mid-
October 2003, and included visual observations from the seismic vessel (described in Moulton and Miller, 
this volume) as well as an analysis of acoustic measurements (Austin and Carr, also this volume). Data 
acquired during the monitoring program addressed knowledge gaps about marine mammal distribution and 
abundance in Scotian Slope waters. Significantly, the area over which observations of marine mammals 
were collected was much in excess of the area where seismic shooting was carried out, extending into 
deep water of the continental slope, but most marine mammals were observed in the upper slope areas. 
These included six dolphin species, and four baleen whale species, including the endangered Blue Whale. 
The seismic program included mitigation measures, including: (1) ramping up of the airgun arrays; (2) 
airgun shutdowns when baleen and northern bottlenose whales were sighted within or closely approaching 
a “safety zone” around the seismic vessel; (3) airgun shutdowns during line changes; and (4) reducing the 
sound energy propagating into the Gully MPA via orientation of seismic lines and minimizing the influences 
of a surface sound channel. 
 
Sightings of marine mammals for the Marathon monitoring program, as well as a similar suite of 
observations for a parallel seismic program carried out by Encana on its Stonehouse Block in May-June 
2003 (Potter et al 2005)(this volume), gave information on marine mammal distributions and behaviour in 
the vicinity of a seismic vessel and operating airgun and streamer array. Both studies indicated relative 
abundance of whales in the shallower upper slope areas, and also suggested avoidance of the seismic 
vessel and arrays by some species.   
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The Marathon monitoring program suggested relatively small zones of avoidance of the operations for 
baleen whales and toothed whales, but little evidence of avoidance by dolphins. Some dolphin species 
accompanied the vessel and swam as close as 150 m from the airguns. Slightly lower sighting rates during 
periods when the seismic array was active, and a slight tendency for baleen whales to swim away during 
seismic activity, were suggestions that whales may have been avoiding the sound. Toothed whales, in 
particular the Northern Bottlenose Whale, were uncommon––only a small number of sperm whales and a 
single sighting of a pod of four northern bottlenose whales occurred during the survey. Sighting rates of 
sperm whales suggested avoidance of the arrays, being lower when the seismic array was operating, and 
individuals were observed further from the vessel during active seismic, than when the airguns were off. 
The avoidance zones were considered relatively small, however, as mean sighting distances for both 
baleen and toothed whales were a kilometre or more. 
 
The survey described by Potter et al. (2005)(this volume) during seismic surveys on Encana’s Stonehouse 
Block, adjacent to Haldimand Canyon, in May-June 2003, showed that marine mammals avoided close 
ranges (< 100 m) from the seismic array more often during seismic acquisition than at quiet times, but that 
the overall number of marine mammals in the observable radius did not change significantly. Marine 
mammals were observed in larger groups and appeared to have become less vocal when the seismic 
source was active compared to when the source was off. Locations of sightings and vocalizations provided 
valuable information on distribution of marine mammals in these areas. Most sightings and vocalizations 
occurred in shallower water, at the north end of the study area and suggested an association of whales 
with the shelf edge (<500 m). 
 
The Encana survey was unique in that vocalizations were monitored acoustically from the seismic vessel 
during routine operations, using the Seamap Passive Acoustic Cetacean Monitoring System  (SPACMS). 
This is a dual hydrophone array deployed ahead and to the side of the airguns and the seismic array, and 
recorded marine mammal vocalizations while the survey was underway. SPACMS could be operated at 
night, and in the fog, and its two hydrophones used to infer distance of the cetacean sound. Despite noise 
levels, the system detected calls from 1-2 km. The Encana survey detected a range of whale and dolphin 
species in the vicinity of the survey area, both acoustically and visually, including Northern Bottlenose at 
night, dolphin whistles and sperm whales in daylight. The study detected no mysticete (baleen) whales 
acoustically, possibly because they weren’t vocalizing or that their low frequency calls were lost in the 
background noise.  
 
More sightings were made in the Encana survey when the airguns were off than on, suggesting that fewer 
groups consisting of more marine mammals on average were observed when the seismic source was 
active, but marine mammals did not as a whole move out of visual range or become less visible. There 
were also more events of marine mammal vocalization detected when the airguns were off than when they 
were on, suggesting that the whales tend to become less vocal but do not go away when the seismic 
source is active. The study made the important suggestion that seismic surveying can apparently have a 
behavioral impact at a high level of statistical significance without visual observers reporting seeing fewer 
marine mammals.  
 
The Encana monitoring program couldn’t measure distance to the vocalizations with enough accuracy to 
use distance as a measure of effect. The average detection range from visual observations did not show a 
significant difference between when the seismic source was on versus when it was not operating, but the 
percentage of detection events within 100 m was greater when the air guns were not operating. The study 
concluded that it is possible that marine mammals do avoid very close ranges when the seismic source is 
on, even if they do not move far enough to exceed visual detection range. 
 
The acoustic monitoring component of the Marathon Canada Petroleum (MCP) seismic survey was carried 
out by Austin and Carr of JASCO Research Ltd on 26-29 June 2003. The JASCO study (Austin and Carr 
2005 (this volume)) used R/V Strait Signet, also used by DFO farfield acoustic monitoring in April (McQuinn 
and Carrier 2005) and later (in mid-July) (McQuinn and Carrier 2005; Simard et al. 2005 (both this volume)) 
to validate the model predictions for the MCP survey and fine-tune monitoring parameters. Measurements 
were made at several locations and depths. The computed received levels were used to validate pre-
season acoustic modeling results and were found to agree with the model results to within 10 dB re 1µPa-
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m (energy flux density)  at most ranges and frequencies. The measurements also showed that sound levels 
received below 100 m depth exceeded those at 180 m by approximately 4 dB re 1µPa-m due to the effect 
of a seasonal surface sound channel. The measurements recorded in the Gully Marine Protected Area, at a 
range of approximately 55 km from the airgun array, indicated average received peak, root mean square 
(rms), and energy flux density levels of: 143, 133, and 130 dB re 1µPa-m respectively at a depth of 77 m; 
and 136, 127, and 124 respectively at 180 m depth. These levels were thus comparable to levels recorded 
in the two DFO by McQuinn and Carrier (2005) at a similar depth distance (140 dB at 100 m) and Simard et 
al. (2005)(103-140 dB at approximately 200 m, 31-91 km from the vessel.). The Marathon acoustic survey 
sampled the closest approach of the seismic array (within 15 km) and the closest (2.6 km away). The 
maximum measured sound levels were received at 30 m depth and at a range of 2.6 km. At this range the 
measured sound levels were: 175, 158, and 152dB re 1µPa-m received peak, rms, and energy flux 
respectively. Because these levels exceeded model predictions, and, in particular, approached the safety 
level for whales (180 dB re 1µPa-m), the safety zone for the survey was increased from 500 to 700 m, the 
safety range that was used for the remainder of the seismic survey. 
 
The McQuinn and Carrier (2005) and Simard et al. (2005) studies focused on measuring seismic sound 
levels, water physical characteristics, and travel ranges in two depth layers, approximately 100 m and 
200m respectively, and therefore gathered valuable data for future modeling of sound transmission in the 
Gully and adjacent areas. Both teams collected CTD (conductivity-temperature-depth) information for 
sound speed determination. One of the objectives of these studies was to use accurate measurements at 
far-field distances to validate models of sound transmission, and predictions of sound levels versus 
distance from the seismic source, used in the environmental assessment. The highest seismic sound level 
McQuinn and Carrier measured in the Gully at approximately 100 m depth was 140 dB re 1 µPa-m, when 
the seismic vessel was 50 km away. These results were applied to models of sound transmission to 
estimate sound levels when the vessel was at its closest approach to the Gully. The estimated levels would 
be between approximately 153 and 157 dB, and further re-estimates of earlier ‘worst case’ predictions of 
sound levels 0.8 km from the source, used in the environmental assessment, gave 178 dB, 14 dB higher 
and close to the 180 dB safety criteria. Comparisons were hampered, however, because of unavoidable 
differences in ocean conditions, arising from differences in season modeled versus observed, the depth 
modeled versus the depth observed, and the actual acoustic trajectories versus the more generalized 
model conditions. 
 
Notably, McQuinn and Carrier found higher transmission into the Gully and detected seismic pulses at 
greater distances from the seismic array than predicted by Moulton et al. in the Marathon environmental 
assessment, reflecting the occurrence of a stronger ‘sound channel’ into the Gully than anticipated in the 
modeling exercise. The environmental assessment therefore underestimated the receive levels at the Gully 
Whale Sanctuary boundary by 7 to 12 dB. Seismic sounds were detectable above background at distances 
greater than 100 km from the source. 
 
The McQuinn and Carrier study gives an interesting perspective on the limitations of comparisons between 
acoustic and modeling studies in a complex and varying oceanic environment. One of the objectives of the 
Gully Seismic Research Program was to validate the accuracy of sound propagation model predictions 
using far-field measurements.  As noted in McQuinn and Carrier “Moulton et al. … used a range-dependent 
acoustic model (RAM) to estimate frequency-specific 2-D transmission losses along selected tracks 
between the Marathon block and the Gully MPA. Although the sound propagation modeling resulted in a 
detailed characterisation of the predicted sound field, only a few of these predictions pertained to the far 
field. Moreover, comparisons between the field measurements and the RAM predictions could not be made 
directly, principally because the source vessel and recording vessels were not positioned along the 
modelled tracks, due to changes in the survey scheduling. In addition, several parameters changed 
between the production of the environmental assessment model results and the field work. One significant 
change was the seismic sound source, from a 4450 in3 to a 3090 in3 dual airgun array (Austin and Carr, 
2005), resulting in the actual source levels being approximately 3 dB higher (254 versus 251 dB re 1 µPa 
RMS). Other factors which differed were the time of the year (July versus June) and therefore the water 
mass structure and assumed sound velocity profile and the depth of recording versus the depth of 
predictions (90 m versus 50 m), although both depths were within the sub-surface sound channel.” 
 



GULLY SEISMIC RESEARCH PROGRAM  LEE, BAIN, AND HURLEY
  

 XVII 

The approach of Simard, Samaran, and Roy, while similar to that used by McQuinn and Carrier, and Austin 
and Carr, used a different hydrophone system, platform, and depth layer (~200 m versus the 100 m depth 
level studied by McQuinn and Carrier) to define levels of seismic sound at two adjacent hydrophones, and 
different travel ranges from the Marathon survey vessel. The July deployment both in the Gully and in 
Shortland and Haldimand Canyons detected seismic pulses from the Marathon survey at all but one of the 
stations, the furthest in Shortland Canyon, 148 km from the seismic array. The study provided valuable 
data for modeling sound propagation from the arrays––sound levels decreased with distance from the 
source by about 5 dB per 10 km, reaching 103 to 140 dB re 1 µPa-m, from 31 to 91 km from the vessel well 
below a level thought to elicit responses from northern bottlenose whales. At these ranges the duration of 
the seismic pulses were stretched to more than 5 s due to multipath reflections, and only frequencies lower 
than 1500 Hz were present, peaking at from 20 to 400 Hz, thus comparable to the lower frequencies of 
toothed whale calls, but generally quieter. The seismic survey also increased the background levels of low-
frequency sound (measured between pulses) in the study area, occurring at the furthest observation point 
from the seismic array (150 km). Simard et al. also detected and measured levels of marine mammal 
vocalizations (MMVs), including a wide range of sounds attributable to (mostly odontocete) whales and 
dolphins expected to occur in the canyons investigated. 
 
The Gully Seismic Research Program also included extensive visual observations of marine mammals, 
some with parallel monitoring of vocalizations, providing a valuable database of diversity, distribution, and 
abundance of these species in critical areas of the Scotian Slope and major submarine canyons. Gosselin 
and Lawson from DFO, Institut Maurice Lamontagne (IML) and Northwest Atlantic Fisheries Centre 
(NWAFC) respectively used conventional shipboard observations of marine mammal occurrence in the 
Gully in the spring (end April-early May) and in the period of Marathon seismic activities in mid-July, as well 
as in Shortland and Haldimand Canyons in the April-May period, to gather information on marine mammal 
distribution and abundance. The study provided a significant snapshot of these species, and relative 
seasonal diversity and abundance (both greater in July), both in the Gully and the adjacent canyons. 
Although the authors suggested that the spring-summer variation was a seasonal one and not connected 
with the ongoing seismic survey, the interpretation cannot be considered conclusive because the study 
design does not allow seasonal and seismic effects to be separated. 
 
Vagle, Chandler and Erickson’s approach of vessel-deployed hydrophones to monitor marine mammal 
vocalizations (MMVs), supported findings of abundant and diverse occurrences of whales, including the 
important northern bottlenose, and dolphins in the Gully and nearby Shortland and Haldimand Canyons. 
Fully 80% of the approximately 50 hours of recordings contained MMVs, with a greater abundance and 
diversity in July than in April. The study did not, however, examine whether vocalization parameters 
changed compared to ‘quiet’ periods while the Marathon seismic survey was underway. This, and a study 
by Laurinolli and Cochrane (2005)(this volume), were examples of cutting edge research, gathering unique 
and high quality measurements of MMVs and using sophisticated analysis techniques (neural network 
analysis which was used successfully to automatically detect and isolate calls in the acoustic recording in 
the Vaigle et al. study––automated recognition of northern bottlenose ‘clicks’ in the Laurinolli and Cochrane 
study). The latter study gathered a series of recordings of ‘clicks’ of northern bottlenose and sperm whales, 
using hydrophones mounted on ocean bottom seismometers (devices which rest on the seabed and record 
seismic echoes) in the Gully, during 14 hours of active air gun activity and for about 16 hours after it ended, 
during the Marathon Petroleum Canada program. The study was not able to demonstrate effects of airgun 
noise on frequency and ‘click’ interval of calls of northern bottlenose whales, or sperm whales, which the 
instruments recorded, although a period of relatively high frequency of clicks coincided with the air gun 
activity compared with the subsequent period. This study both proved the capability of the instruments to 
simultaneously detect seismic pulses and whale vocalizations, and developed algorithms for automatically 
identifying and processing them.  
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CONCLUSIONS 

The following are the key conclusions of the study, including program objectives, where relevant, to which 
the conclusions correspond:   
 
1) The study clearly shows the importance of simultaneous visual and acoustical observations of marine 
mammals before, during and after exposure to anthropogenic noise, such as seismic exploration;  
 
2) Industry, third-party contractors and DFO scientists demonstrated a high level of cooperation during the 
planning and implementation of the field program and later on with data-sharing;  
 
3) Industry successfully implemented enhanced mitigation and near-field monitoring over and above 
industry standards as a precautionary approach;  
 
4) No shutdowns in seismic operations were necessary since no incursions of marine mammals were 
observed or detected acoustically inside respective safety zones (700 m - Marathon; 800 m -EnCana)––
OBJECTIVE 6; 
 
5) There were no indications that marine mammals including endangered species such as the blue whale 
or northern bottlenose whale were significantly impacted by either the Marathon or EnCana seismic 
programs––OBJECTIVE 6;  
  
6) Acoustic signatures of seismic impulses were successfully gathered both in the near-field and farfield, 
which will enable verification of noise propagation modeling predictions. Acoustic recordings were made of 
several marine mammal species, including the northern bottlenose whale––OBJECTIVE 1; 
 
7) The Seamap Passive Acoustic Cetacean Monitoring System (SPACMS) proved a valuable marine 
mammal observation tool that can usefully complement visual observations––OBJECTIVE 4; 
 
8) The highest average sound pressure level (RMS) measured in the Gully MPA was 145 dB (re 1 µPa-m) 
at 90 m depth, 50 km from the seismic array. This sound level was measured within the Gully Whale 
Sanctuary while the seismic vessel was surveying the western portion of the exploration block. It was 
estimated that sound levels in the Whale Sanctuary would have been higher, between approximately 153 
and 157 dB, when the vessel was at its closest approach to the Gully in the eastern portion of the survey 
block. The “worst case” sound level at the Gully MPA boundary, i.e. 0.8 km from the source, was estimated 
to be approximately 178 dB––OBJECTIVES 1 & 2; 
 
9) The predictability of measured ocean-bottom seismic acoustic levels is not particularly good. It is 
uncertain whether this is principally due to limitations in field measurements or limitations in the predictive 
modeling methodologies employed. Measured sound levels were significantly higher than the model 
predictions at several stations––OBJECTIVE 1; 
 
10) Analysis of marine mammal vocalization data from hydrophones mounted on ocean bottom 
seismometers deployed in the Gully used automated procedures which were successful in separating 
‘clicks’ presumed to be from bottlenose whales from noise or from clicks presumed generated by sperm 
whales. Limited comparisons could be made between seismic and non-seismic periods, and the procedure 
was less useful for the analysis of the acoustic behaviour of bottlenose whales since many vocalizations 
were missed. No conclusions on whale vocalization behaviour in relation seismic were drawn from these 
results due to the small dataset and lack of information prior to seismic shooting––OBJECTIVES 3 & 6; 
 
11) The visual and acoustic surveys clearly show the abundance of marine mammals in the Gully region. 
Also evident is the extensive occurrence of vocalizations of these mammals. The combination of a neural 
network analysis and a spectrogram threshold approaches classified vocalizations with an 80% success 
rate–– OBJECTIVES 3, 4, & 5; 
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12) The 3-D seismic survey introduced a low-frequency sound above this background that was detected up 
to 150 km from the source. The measured far-field (30-150 km) seismic sound lasted much longer than the 
pulse emitted by the airguns because of multipath arrivals that merged together. At ranges > 100 km, the 
seismic sound level almost reached the background noise level––OBJECTIVES 1 &2; 
 
13) The biological sounds in the surveyed area of the Gully were mainly odontocete calls and clicks. They 
were abundant and present at the large majority of stations, which reveals a significant degree of 
odontocete occupancy and activity in the survey area during the seismic exploration. Based on these 
observations, northern bottlenose whales (NBW) were present at all deep stations, except the three off-
shelf stations south-west of the Gully mouth, which include the closest (< 52 km) two stations from the 
airguns. Their absence at these locations agrees with previous sightings which show that NBW seldom 
frequent this part of the survey area (outside and southwest of the Gully)––OBJECTIVES 3, 4, 5, & 6; 
 
14) Patterns in abundance and vocalizations related to seasonal variation in several studies could not be 
separated from effects due to seismic programs, and therefore are useful mainly to indicate distribution and 
species composition present.  For the species of concern (northern bottlenose whales, mysticetes, and 
sperm whales) were still present in the Gully when exposed to sound levels of 145 dB re 1 µPa (rms), after 
seismic activities had been underway for several weeks. The information on effort, density and associated 
variance provided by this project, can be used to estimate the survey effort that would be required, through 
longer ship-time periods or more effective searching techniques, to better detect changes in abundance 
and distribution at the scale that are shown from these results. Changes in abundance and distribution from 
surveys such as this provide measures of change at a population scale. However, a study intended to more 
thoroughly assess the impacts of seismic operations or any other human activity on a marine mammal 
population should include the monitoring of whales equipped with satellite-linked transmitters, time-depth-
velocity-sound recorders or other telemetry devices to measure the more subtle changes in behaviour at an 
individual scale––OBJECTIVES 3, 4, 5, & 6. 
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ABSTRACT 

Macnab, P. 2005. The Gully Marine Protected Area and Northern Bottlenose Whales on the Scotian Shelf. Pages 1-14, 
In, K. Lee, H. Bain, and G.V. Hurley, Eds. 2005. Acoustic Monitoring and Marine Mammal Surveys in The Gully and 
Outer Scotian Shelf before and during Active Seismic Programs. Environmental Studies Research Funds Report No. 
151, 154 p + xx.  
 
This paper provides historical background and regulatory context for the Gully Seismic Research Program, with 
emphasis on considerations for the hydrocarbon sector. It summarizes two related conservation issues, the Gully 
Marine Protected Area (MPA) and the at-risk Scotian Shelf population of northern bottlenose whales. It presents a 
chronology of these linked conservation issues as they relate to oil and gas exploration in the Nova Scotia offshore; 
describes objectives, regulations and management measures for the Gully MPA; and outlines the population 
assessment and ongoing listing process for northern bottlenose whales under the Species at Risk Act. 

INTRODUCTION 

In the late 1960s The Gully, a large submarine canyon east of Sable Island offshore Nova Scotia, was 
recognized by Blandford whalers as the most predictable location for finding and hunting northern 
bottlenose whales. Recent renewed scientific interest in this species and growth in offshore exploration 
provided much of the original impetus for conservation measures implemented in the mid 1990s. During 
this period, underwater sound emerged as a science priority for managers and regulatory bodies that 
needed to make decisions about human activities in and near the Gully. By the time the Gully Seismic 
Research Program was being developed in the final months of 2002, a Gully MPA proposal was under 
discussion and the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) had 
reclassified the Scotian Shelf population of northern bottlenose whales as endangered. At the time of 
writing (August 2004), the Gully MPA had been designated under the Oceans Act. Public consultations 
were also being scheduled to collect input on the consequences of adding the Scotian Shelf population of 
northern bottlenose whales to the List of Wildlife at Risk in Canada under the Species at Risk Act. 

CONSERVATION HISTORY 

The Gully and northern bottlenose whales have attracted regional, national and international conservation 
interest since the early 1990s. Government agencies, researchers, marine industries and conservationists 
have taken significant steps to recognize and protect the Gully and its associated organisms. Although the 
Gully MPA now has broad ecosystem conservation objectives that affect all user groups, much of the initial 
conservation interest in the Gully focused on cetaceans—especially northern bottlenose whales—and 
concerns surrounding the potential for impact from nearby hydrocarbon activities. This section summarizes 
the linked conservation histories of the Gully MPA and Scotian Shelf northern bottlenose whales with an 
intentional focus on related developments in the offshore oil and gas sector2. The chronology of scientific 

                                                   
2 This section draws heavily from other sources that provide a more comprehensive history of conservation efforts in the Gully (e.g. 
DFO, 1998b; Fenton et al., 2002; Canada Gazette, 2004). Those sources should be consulted for details on the conservation 
pressures, science questions and management decisions related to other sectors, including fishing, shipping and marine research. 
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research, government involvement and industry response outlined below provides background for the next 
two sections on the present regulatory context. 
 
During the 1960s and 70s, Blandford whalers3 and cetacean scientists recognized the Gully as an 
important whale habitat (e.g. see Sutcliffe and Brodie, 1977). In 1988, biologists from Dalhousie University 
began studying the diverse whale and dolphin populations found in and near the canyon. Much of the 
Dalhousie effort and interest focused on the northern bottlenose whale (Hyperoodon ampullatus), a 
member of the Ziphiid, or beaked whale, family consistently encountered in the Gully. The awareness 
generated by these studies prompted the offshore oil and gas industry to initiate the first Gully-related 
precautionary management measure. LASMO Resources, initial operators of the Panuke-Cohasset 
hydrocarbon field to the west of Sable Island, expanded their tanker exclusion zone to include the Gully in 
1990. 
 
The Canadian government considered and implemented several conservation measures for the Gully and 
northern bottlenose whales in the 1990s. Parks Canada recognized the Gully as a Natural Area of 
Canadian Significance (P. Lane and Associates, 1992) and DFO advised the Department of National 
Defence to locate a ship shock trial well away from known concentrations of whales in the Gully (P. Brodie, 
pers. comm.). DFO established the Gully Whale Sanctuary in 1994 through Annual Notices to Mariners 
with the aim of reducing ship collisions and minimizing noise disturbance for northern bottlenose whales 
(Conway and Wallace, 1994). The Canadian Wildlife Service examined the need for additional 
conservation measures and called for an overall Gully conservation strategy (Amirault, 1995). In 1996, 
bottlenose whales were assessed as a distinct Gully population and designated “vulnerable” by COSEWIC, 
the non-governmental Committee on the Status of Endangered Wildlife in Canada (Whitehead et al., 1996). 
 
In the mid-nineties, six natural gas fields on Sable Island Bank 30 km west of the Gully entered a 
production phase. The Gully was identified as a “unique ecological site” and a “valued ecosystem 
component” during the project’s environmental assessment. A Joint Public Review Panel (1997) highlighted 
the ecological importance of the Gully and made recommendations with respect to the potential for 
contamination and acoustic disturbance in the Gully. The Canada-Nova Scotia Offshore Petroleum Board 
(CNSOPB), joint federal-provincial regulator for offshore oil and gas, granted conditional approval for the 
project (CNSOPB, 1997). The proponents met the Gully conditions by implementing a Code of Practice 
restricting overflights and vessel transit and by setting up an environmental effects monitoring program that 
included acoustic4 and benthic sampling sites near the Gully (Jacques Whitford Environment Ltd., 1998, 
Hurley, 2000). 
 
While the Sable project was undergoing environmental assessment and public review, Canada passed the 
Oceans Act and ushered in an era of integrated and ecosystem-based approaches to oceans 
management. The Oceans Act gave DFO the authority to regulate for MPAs and marine environmental 
quality. DFO became the federal lead for the Gully, and in 1997 the Department initiated the Gully 
Conservation Strategy by launching a multi-disciplinary scientific review to establish the state of knowledge 
of the Gully ecosystem (DFO, 1998a; DFO, 1998b; Harrison and Fenton, 1998). 
 
Part way through the DFO investigations, the CNSOPB issued Call for Bids NS97-2 comprising 6 land 
parcels in the Sable Island area. One parcel that extended into the Whale Sanctuary was withdrawn at 
DFO’s request and shortly thereafter, the CNSOPB adopted a Gully Policy which stated that no oil and gas 
activity would be permitted in the Gully. During this same period, an environmental assessment of seismic 
exploration on the Scotian Shelf recommended that expanded assessments be conducted for programs 
proposed within a 10 km buffer around the Gully Whale Sanctuary (Davis et al., 1998). A subsequent 
assessment of exploration drilling on the Scotian Shelf also recommended expanded treatment, research 
and monitoring for drilling programs near the Gully (Thomson et al, 2000). 
 

                                                                                                                                                                      
Significant conservation issues, such as bottom trawling in coral areas and pelagic longlining in whale habitat are not discussed here 
as critical background for the Gully Seismic Research Program. 
3 Whaling records indicate that 87 northern bottlenose whales were taken in or near the Gully in the 1960s. 
4 A program of acoustic monitoring was implemented for pile driving during the construction phase of the project. The operator also 
proposed monitoring of drilling and production noise. 
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Late in 1998, a core area of the Gully was identified as an Area of Interest (AOI) for further evaluation 
under the MPA Framework (DFO, 1999). Between 1999 and 2003, the Gully was assessed as a candidate 
MPA. Additional studies, including multibeam hydrographic surveys5, were conducted to better understand 
the Gully ecosystem and related resource values (e.g. Breeze, 2002; Gordon and Fenton, 2002; Rutherford 
and Breeze, 2002; Sameoto et al., 2002; Fader, 2003). In the Fall of 2002, DFO circulated a draft MPA 
proposal for discussion amongst interested parties. DFO applied interim protection during these evaluation 
and consultation phases with the requirement that no new activities be undertaken in the AOI. 
Coincidentally, these phases of MPA development also witnessed considerable growth in deep-water 
hydrocarbon interest with numerous exploration licences issued and many activities approved on the 
eastern Scotian Shelf and Slope. The Gully and northern bottlenose whales were routinely treated as 
valued ecosystem components during environmental assessments for these undertakings. 
 
Exclusive and non-exclusive seismic programs6 and drilling programs near the Gully from 1999 onwards 
renewed longstanding questions about anthropogenic sound and the potential for behavioural effects on 
whales and other organisms. Acoustic uncertainties for the Gully included ambient noise levels, sound 
propagation in canyons and the vocalizing patterns of northern bottlenose whales and other cetaceans7. 
Some of these questions received research attention while the MPA was being assessed (e.g. see Lawson 
et al., 2000; Desharnais and Collison, 2001a and 2001b; Hooker and Whitehead, 2002). Also during this 
period, the U.S. National Marine Fisheries Service included the Gully in its Final Ruling on the taking of 
marine mammals incidental to naval sonar operations (Federal Register, 2002). Canyon waters in the Gully 
deeper than 200 metres were recognized as part of the North American East Coast Offshore Biologically 
Important Area, a zone within which the U.S. Navy would not be permitted to operate its low frequency 
active sonar system during peace time. 
 
DFO’s Gully Science Review raised a number of questions about relative cetacean abundance and 
diversity in the Gully (Harrison and Fenton, 1998; Whitehead et al., 1998). Questions were also raised 
about bottlenose distribution outside the Gully (Keizer, 1998). Dalhousie cetacean biologists investigated 
these questions in 2001 and 2002 with a survey of the Scotian Shelf along the 1000 metre depth contour. 
Bottlenose whales were observed in Shortland and Haldimand canyons to the east of the Gully (Wimmer, 
2003). In the Fall of 2002, COSEWIC reassessed the bottlenose whale population and changed the 
designation from the Gully population to the Scotian Shelf population. COSEWIC assigned the 
“endangered” category of risk to northern bottlenose whales after considering new population estimates 
and the growth in oil and gas development offshore Nova Scotia (COSEWIC, 2002). The COSEWIC 
decision in the Fall of 2002 coincided with the Gully MPA proposal and scoping meetings for environmental 
assessments being prepared for the 2003 seismic season. These three factors—MPA discussions, 
reclassified whales and anticipated seismic surveys—prompted development of the initial proposal for the 
Gully Seismic Research Program. 

THE GULLY MARINE PROTECTED AREA 

Marine Protected Areas (MPAs) are marine areas of Canada designated for special protection under the 
Oceans Act. Following several years of planning, design and consultation, the Gully MPA was designated 
by regulation in May 2004 (Canada Gazette, 2004). The purpose of this particular MPA designation is to 
conserve and protect the natural biological diversity of the Gully and to ensure its long-term health. Owing 
to its location, shape, size, geology and physical oceanography, the Gully ecosystem contains many 
diverse habitats and is highly productive (Rutherford and Breeze, 2002). The deep water ecosystem of the 

                                                   
5 DFO and Natural Resources Canada charted the central portion of the Gully with the aid of a deep-water multibeam system 
mobilized by the oil and gas industry. Uncertainty surrounding the multibeam sound source and the potential for acoustic effects 
prompted DFO to cover the costs for marine mammal monitoring throughout the survey. 
6 Exclusive seismic programs are typically proprietary 3-D surveys undertaken by holders of exploration licences over a small area, 
while non-exclusive programs are typically 2-D surveys undertaken over large areas by speculative operators. 
7 During the MPA evaluation and assessment phases, DFO reviewed many project specific environmental assessments (EAs), 
strategic environmental assessments (e.g. CNSOPB, 2003) and the generic assessments for seismic and drilling on the Scotian Shelf 
(i.e. Davis et al., 1998; Thomson, 2000). Correspondence and Letters of Advice outlining DFO concerns and recommendations were 
sent to the CNSOPB for every document examined. Science reviews of EAs were also conducted under the auspices of the DFO 
Maritimes Regional Advisory Process (RAP) and Science Advisory Committee for Offshore Petroleum Activities (SACOPA). 
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Gully supports a range of mammal, fish and benthic organisms, including rare, fragile and at-risk species, 
all of which are susceptible to impact from human activity. The MPA satisfies international obligations, such 
as those made by Canada with the recent ratification of the United Nations Convention on the Law of the 
Sea. The MPA also makes an important contribution to the national system of marine protected areas 
called for by the Oceans Act and Canada’s Oceans Strategy. 
 
The Gully MPA comprises 2,364 square kilometres and includes the habitat of deep-sea corals and a large 
variety of whale species, including the northern bottlenose whale. General prohibitions against disturbance, 
damage, destruction or removal of any living marine organism or any part of its habitat apply to the entire 
water column and include the seabed to a depth of 15 metres. The regulations also prohibit activities, 
including the depositing, discharging or dumping of substances within the MPA or in the vicinity of the MPA 
that contravene the general prohibitions. This part of the regulations recognizes that human activities 
outside the MPA have the potential to cause harmful impacts within the MPA. Indeed, although the Gully 
MPA is mostly defined by the canyon feature, there are oceanographic processes, trophic connections and 
acoustic pathways that link the MPA to a much larger area. 
 
The MPA contains three management zones with varying levels of protection based on the conservation 
objectives and ecological vulnerability of each zone (see Figure 2) . Zone 1 comprising the deepest parts of 
the canyon is preserved in a relatively undisturbed state. Canyon waters deeper than 600 metres receive 
full ecosystem protection, that is, no extractive activities are permitted on the seabed or in the water 
column. Zone 1 includes those portions of the Gully that are thought to be primary canyon habitat for the 
Scotian Shelf population of northern bottlenose whale. Zone 2 imposes strict protection for the canyon 
head and sides (300-600 m), feeder canyons and the continental slope. Structurally complex seafloors and 
diverse benthic communities are the conservation focus in this zone—net fisheries and mobile fishing gears 
have not been allowed. Zone 3 includes the shallow sand banks on either side of the canyon. These areas 
are prone to regular natural disturbance and are therefore regarded as less sensitive than the deeper 
portions of the MPA. Commercial activities proposed for Zone 3 will be assessed on a case by case basis 
for general compatibility with the MPA and compliance with the regulations. 
 
Regulatory exceptions and plan approvals8 are used to allow for uses that do not compromise the 
conservation objectives of the MPA. Search and rescue, international navigation rights and activities 
related to national security and sovereignty have been permitted within the MPA. Scientific research and 
monitoring may be approved in all three zones provided a plan is submitted and the research meets all 
regulatory requirements. Although no fishing is permitted within Zone 1, hook and line fisheries for halibut, 
tuna, shark and swordfish have been allowed in Zones 2 and 3. Other activities may be approved for 
Zone 3 on a case by case basis provided they do not cause disturbance beyond the natural variability of 
the ecosystem. Potential effects of activities occurring outside the MPA are addressed through existing 
management frameworks, review processes and approval mechanisms, such as those in place under the 
Canadian Environmental Assessment Act. The MPA management plan, to be developed with the multi-
stakeholder Gully Advisory Committee9, will provide further guidance, interpretation and regulatory 
definition as well as a comprehensive set of management strategies. 
 

                                                   
8 Activity proponents must submit a plan for evaluation and Ministerial approval 60 days prior to undertaking the activity. One 
component of the mandatory plan is a report assessing the environmental impact of the activity on the MPA, including a consideration 
of any cumulative environmental effects. 
9 In addition to federal and provincial government personnel, the Gully Advisory Committee includes representatives from the fishing 
industry, oil and gas industry, environmental non-governmental organizations and academic institutions. 
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Figure 2. Boundary and management zones of the Gully Marine Protected Area and Canada-Nova 
Scotia Offshore Petroleum Board licence areas as of August 2004. 
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MPA CONSIDERATIONS FOR THE OIL AND GAS SECTOR 

In terms of oil and gas activities, the regulations do not prohibit the issuance of future rights or remove 
existing sub-surface rights to hydrocarbons within the MPA boundary (i.e. the Primrose Significant 
Discovery Licence shown in Figure 2. Nor do the regulations explicitly prohibit oil and gas activities in the 
MPA, although it is assumed that the general prohibitions will have the effect of limiting access with most 
current technologies (e.g. airguns). Industry proponents could theoretically apply to the Minister of 
Fisheries and Oceans for approval to conduct an activity in Zone 3, however, the CNSOPB presently 
restricts access to the MPA by way of its Gully Policy (CNSOPB, 2003). Thus, the potential for 
transboundary impacts from hydrocarbon activities in surrounding waters is the immediate management 
priority. 
 
The MPA will largely enshrine existing review processes and mechanisms and, in many cases, the 
management plan will augment and formalize the various interim protection measures that have been 
adopted by the petroleum regulator and industry. A number of precautionary measures and policy initiatives 
have been implemented to reduce impacts on the Gully ecosystem. Adjacent operators have made the 
Gully a key consideration in their environmental impact assessments. Enhanced mitigation measures, 
operational codes of conduct and effects monitoring programs have also been implemented. Most of these 
measures predate the MPA; they respond to recognized environmental sensitivities and generally reflect 
the uncertainty surrounding the potential effects of exploration on the Gully ecosystem. The principal 
change with a statutory protected area in place will be for operators outside the MPA to ensure that they 
are in compliance with the regulations. 
 
Industry and DFO’s partner regulators12 will be fully involved in the development of the management plan, 
as it will be used to define the conditions for activities in relation to the MPA. A key requirement is the 
determination of what constitutes “disturbance” and “adjacency” when applying the general prohibitions to 
activities outside the MPA boundary. It is understood that this determination will depend on the nature of 
the activity, the zones of potential influence and the ecological sensitivities involved. Beyond the Gully 
Seismic Research Program described in this volume, a number of joint initiatives are underway to address 
these definitional issues and to improve the regulatory and assessment processes for industry. Specifically, 
DFO and the CNSOPB have committed to the development of protocols for hydrocarbon activities around 
the MPA. Interpretive guidelines for the conduct of seismic surveys near the Gully seismic are presently 
under development. These guidelines will incorporate the findings of the Gully Seismic Research Program 
and establish assessment requirements, mitigation measures and expectations for observation and 
monitoring. 
 
Non-regulatory actions will also form an integral part of the conservation and management of the MPA, 
particularly when dealing with activities in the vicinity of the MPA. Voluntary avoidance and codes of 
conduct have already been described. An intergovernmental and multi-stakeholder planning process for the 
Eastern Scotian Shelf Integrated Management (ESSIM) initiative will lead to an integrated ocean 
management plan for the broader area surrounding the Gully (Rutherford et al., 2005). In addition to 
improved government coordination and stakeholder involvement in ocean planning, this initiative will 
promote greater stewardship and responsible ocean use, both within and outside the MPA. One key goal of 
the ESSIM initiative is to achieve necessary and predictable levels of environmental protection while 
enabling activities to occur near the Gully in a compatible manner. 

                                                   
10 Activity proponents must submit a plan for evaluation and Ministerial approval 60 days prior to undertaking the activity. One 
component of the mandatory plan is a report assessing the environmental impact of the activity on the MPA, including a consideration 
of any cumulative environmental effects. 
11 In addition to federal and provincial government personnel, the Gully Advisory Committee includes representatives from the fishing 
industry, oil and gas industry, environmental non-governmental organizations and academic institutions. 
12 DFO is the lead regulator for the Gully MPA. Other regulators will continue to play a key role in the development and implementation 
of management measures. For example, Transport Canada will support work on ballast water exchange and the CNSOPB will 
continue to administer oil and gas activities. 
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SPECIES AT RISK ACT  

The northern bottlenose whale is a focal species of the Gully MPA and the principal cetacean species of 
interest in the Gully Seismic Research Program. This section outlines Canadian legislation for species at 
risk of extinction as well as the status and legal listing process for Scotian Shelf bottlenose whales. The 
Species at Risk Act (SARA) was proclaimed in June 2003 and all sections became enforceable in 
June 200413. The purposes of the legislation are to prevent extinctions in Canada; to secure the recovery of 
wildlife species, sub-species and distinct populations; and to prevent wildlife from becoming further at-risk. 
There are five basic elements to SARA: science-based assessments, a listing process, species protection, 
mandatory recovery planning and public involvement. The protective elements of the Act apply only to 
species on the List of Wildlife Species at Risk. The existing List, Schedule 1 of the Act, includes 
233 species assessed at the time SARA was reintroduced to the House of Commons in October 2002. 
Atlantic Canadian marine species presently on the SARA List include Inner Bay of Fundy salmon, three 
species of wolffish and the leatherback turtle. Schedules 2 and 3 included species that had been assessed 
over the years, but had yet to be reassessed with updated criteria and current information. 
 
Assessments are completed by the Committee on the Status of Endangered Wildlife in Canada 
(COSEWIC), a SARA-mandated group comprised of wildlife experts from government, academia, 
Aboriginal organizations and non-government organizations. COSEWIC starts the process by 
commissioning a science-based status report to evaluate the conservation status of a species. Status 
reports are peer reviewed and approved by COSEWIC Species Specialist Committees. Approved status 
reports are examined by COSEWIC and criteria are applied to assign the appropriate level of risk (see 
COSEWIC, 2003). A species may be designated in one of seven categories: extinct, extirpated, 
endangered, threatened, special concern, data deficient or not at risk. Once a species receives a formal 
risk designation by COSEWIC, the final status report is provided to the Minister of Environment and the 
Minister of Fisheries and Oceans in the case of aquatic and marine species. The status report and a 
recommendation are forwarded to the Governor in Council for a decision on whether or not to add the 
species to the List of Wildlife Species at Risk in Canada. 
 
Once added to the List, species and their habitats are protected. Planning and recovery effort are targeted 
towards endangered species (facing imminent disappearance from Canada), threatened (likely to become 
endangered if limiting factors are not reversed) and species of special concern (particularly sensitive to 
human activities or natural events). Potential actions related to protection are prescribed in SARA and 
include prohibitions, emergency orders, project reviews, enforcement, cooperation, exemptions and 
permits. Recovery strategies and action plans must be prepared for endangered and threatened species 
within 1 and 2 years respectively. Strategies and plans provide a more detailed description of efforts to 
reduce threats and to support recovery. When and where possible, critical habitat is identified and 
protected. In the case of species of special concern, a management plan must be prepared within 3 years. 
 
All documents, consultation notices and decisions related to SARA are posted on the Public Registry 
(sararegistry.gc.ca). Public involvement in SARA is encouraged throughout the listing and recovery phases. 
Approved status reports are made available on the Public Registry once they are received by Environment 
Canada. During the listing process, consultation with Canadians identifies for the Government of Canada 
the potential social and economic impacts of adding a species to the SARA list. Once species are added to 
the List, the public and affected interests play an essential role in recovery planning and the implementation 
of protection measures. Species and habitat stewardship, in particular, are recognized as critical for 
species recovery. 

                                                   
13 More detailed information on this wildlife legislation and its application are available from the Species at Risk Act Public Registry 
(www.sararegistry.gc.ca). 
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NORTHERN BOTTLENOSE WHALE STATUS ASSESSMENT 

COSEWIC first examined the northern bottlenose whale in 1992 and assessed the species as not at risk in 
Canada. When the species was reassessed in 1996, COSEWIC recognized a distinct Gully population 
separate from the Labrador population14 and designated it vulnerable under the criteria of the day. An 
updated COSEWIC Status Report was prepared for northern bottlenose whales in the Fall of 2002 
(COSEWIC, 2002). The update included new information on bottlenose whale observations outside the 
Gully (i.e., in Shortland and Haldimand canyons) and a revised population estimate of about 
130 individuals. The Marine Mammal Species Specialist Committee of COSEWIC received the new 
bottlenose whale Status Report and approved of the change in designation from a Gully population to the 
Scotian Shelf population. 
 
COSEWIC examined the 2002 Status Report and uplisted the Scotian Shelf population to “endangered,” an 
indication that the population was believed to be facing imminent extirpation or extinction. In assigning the 
status designation, COSEWIC applied its quantitative criterion for very small populations: when there are 
less than 250 mature animals in a population, it may be assessed as endangered (COSEWIC, 2003). Rigid 
criteria were not applied to the threats assessment, but COSEWIC did consider changes in human 
activities since the previous Status Report, for example, the growth in deep water exploration 
(H. Whitehead, pers. comm.). The COSEWIC Assessment provides the following short rationale for 
designating the Scotian Shelf Population as endangered: “This population totals about 130 individuals and 
appears to be currently stable. Oil and gas development in and around the prime habitat of this population 
poses the greatest threat and will likely reduce the quality of their habitat. However, there is little 
information as to how this species is or is not affected by oil and gas development activities.” Entrapment in 
fishing gear and contaminants are also identified as threats in the Status Report15. 

NORTHERN BOTTLENOSE WHALE LISTING PROCESS 

At present, northern bottlenose whales are not on the List of Wildlife Species at Risk and are therefore not 
protected under SARA. Between the 1996 assessment of northern bottlenose whales and the 
reintroduction of SARA to the House of Commons in 2002, COSEWIC developed new criteria based on 
those in use by the International Union for the Conservation of Nature (see COSEWIC, 2003). Only species 
and populations assessed under these updated criteria as of the end of 2001 were added to the List. The 
Scotian Shelf population of northern bottlenose whales was reassessed after this cut off date and was not 
included on the initial legal List. However, the “Gully population” of northern bottlenose whales was 
included in Schedule 3 of SARA as a species of special concern, reflecting COSEWIC’s 1996 assessment. 
 
Now that COSEWIC has reclassified northern bottlenose whales under the new criteria (i.e. less than 
250 mature individuals), the Government of Canada follows the process set out in SARA to add a species 
to the List of Wildlife Species at Risk. This process began when the approved COSEWIC status report was 
finalized, translated and posted on the SARA Public Registry. The assessment was considered formally 
received by the Government of Canada in January 2004 and a Response Statement was posted in 
April 2004 (Environment Canada, 2004). A listing recommendation to the Governor in Council would 
normally follow shortly after a Response Statement. In the case of northern bottlenose whales and other 
newly assessed aquatic species, the process was extended by 9 months to allow for adequate consultation 
on whether or not the populations should be added to the List of Wildlife at Risk. Opportunities to comment 
and updates on the progress of consultations will be posted on the SARA Public Registry. Confirmed 
                                                   
14 Under COSEWIC criteria, a population is defined as “a geographically or otherwise distinct group (a portion of the total population) 
that has little demographic or genetic exchange with other such groups (populations)—typically one successful migrant individual or 
gamete per year or less” (COSEWIC, 2003). Photographs and biopsy samples are being collected off Newfoundland and Labrador by 
DFO and Dalhousie researchers in an effort to better understand the distribution and stock identities of northern bottlenose whales in 
Canadian waters. Also see Dalebout et al.  (2001) for a discussion of genetic diversity and population structure. 
15 These and a number of other pressures are discussed in the Status Report, however, the COSEWIC Assessment delivered to the 
Government of Canada, and the Federal Response Statement (Environment Canada, 2004) only include oil and gas development as 
a threat. 
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opportunities for comment include an online northern bottlenose whale Consultation Workbook (DFO, 
2004) and public information sessions scheduled in Nova Scotia for October 2004. 
 
It is anticipated that the COSEWIC Assessment will be sent to the Governor in Council (GIC) in 
January 2005 following the period of extended consultations. The Minister of Environment, in consultation 
with the Minister of Fisheries and Oceans, will also provide the GIC with a listing recommendation. Within 
9 months of receiving the assessment, the GIC must make a listing decision or the population will be 
automatically added to the List according to the 2002 endangered status designation. The GIC can make 
one of three possible decisions: i) accept the COSEWIC assessment and add the population to the List; ii) 
choose not to add the population to the List; or iii) refer the species back to COSEWIC for more information 
or further consideration. If the GIC decides to add northern bottlenose whales to the List, a draft Order and 
Regulatory Impact Analysis Statement will be published in the Canada Gazette Part I for public comment. 
The final decision to either add northern bottlenose whales to the List or refer the population back to 
COSEWIC will be published in the Canada Gazette Part II and on the Public Registry. 

SARA IMPLICATIONS FOR THE OIL AND GAS SECTOR 

While it is somewhat premature to comment on specific SARA implications for the oil and gas industry as 
the decision to list the Scotian Shelf population of northern bottlenose whales has yet to be reached, a 
range of potential impacts can be predicted. If added to the List of Wildlife Species at Risk, the Scotian 
Shelf population will receive legal protection under SARA. If particular activities are assessed to be a threat 
to the survival and recovery of the population, management measures will be put in place to limit those 
activities. 
 
In the 2002 Status Report, COSEWIC (2002) identifies certain oil and gas activities, including seismic 
surveys, as potential threats to recovery16. Such activities would be reviewed and might be restricted in 
areas defined as critical habitat—if and when identified. The recovery planning process could identify a 
range of operational requirements and guidelines for exploration and development. These guidelines might 
include time and area exclusions, requirements for marine mammal observers, acoustic monitoring and 
other measures deemed appropriate. Finally, proponents for any oil and gas activities that fall under the 
Canadian Environmental Assessment Act, including seismic, drilling and production, would need to address 
impacts in accordance with the SARA provisions of that legislation. 
 
Whatever the outcome with the SARA listing process, it is unlikely that northern bottlenose whales and 
other marine mammals will cease to be an important environmental consideration for oil and gas operations 
near the Gully and elsewhere on the Scotian Shelf. Whether or not the animal is added to the List of 
Wildlife at Risk, and whatever the category of risk assigned by COSEWIC, northern bottlenose whales will 
continue to receive statutory protection under the Gully MPA Regulations17 and the Marine Mammal 
Regulations of the Fisheries Act. It is also important to note that the Scotian Shelf population of northern 
bottlenose whales is only one of many wildlife species considered at risk of extinction offshore Nova 
Scotia—there are others on the SARA List now and more will be assessed and added to the List in the 
coming years18.  

                                                   
16 Also see a report on threats prepared by Doherty (2004) with funding from the Habitat Stewardship Program for Species at Risk, a 
Government of Canada program jointly managed by DFO, Environment Canada and Parks Canada. See Davis et al. (1998) and 
Thomson et al. (2000) for broad reviews of the potential environmental effects associated with seismic and exploration drilling on the 
Scotian Shelf. 
17 For example, the exclusion of most activities from Zone 1 of the MPA reduces the risk of direct negative interactions with northern 
bottlenose whales in their primary habitat. 
18 Listed and candidate species, along with threats, protections and recovery actions (e.g., shipping lane alterations to protect right 
whales in the Bay of Fundy) are profiled on Environment Canada’s Species at Risk website (www.speciesatrisk.gc.ca). Species 
currently in the listing process include blue and North Atlantic right whales, harbour porpoise, cusk, Atlantic cod and porbeagle shark. 
COSEWIC is set to assess or reassess several species of grenadier, skate and shark, loggerhead turtle, and fin and Sowerby’s 
beaked whales. Most of these species have been observed in the Gully, but unlike the northern bottlenose whale—which appears to 
have fairly narrow habitat preferences—most are thought to have broad offshore distributions. 
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SUMMARY 

The Gully Marine Protected Area conserves and protects an important marine ecosystem in eastern 
Canada. MPA regulations are in place, a Management Plan is being drafted and seismic guidelines are 
being developed for adjacent waters. Although the Gully MPA protects core habitat for northern bottlenose 
whales, many questions have been raised about species distribution and conservation pressures outside 
the Gully. Based on a small population estimate, the Committee on the Status of Endangered Wildlife in 
Canada has designated the Scotian Shelf population of northern bottlenose whales as endangered. 
Consultations will be conducted by the Government of Canada to determine the costs and benefits of 
adding the population to the List of Wildlife Species at Risk. If added to the List, northern bottlenose whales 
offshore Nova Scotia will be fully protected under the provisions of the new Species at Risk Act. Many of 
the science and management questions surrounding the Gully MPA and northern bottlenose whales remain 
unanswered. The Gully Seismic Research Program provides an important opportunity for collective 
learning at this critical juncture. 
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ABSTRACT 

Austin, M.E. and S.A. Carr. 2005. Summary report on acoustic monitoring of Marathon Canada Petroleum ULC 2003 
Cortland/Empire 3-D seismic program. Pages 15-28, In, K. Lee, H. Bain, and G.V. Hurley, Eds. 2005. Acoustic 
Monitoring and Marine Mammal Surveys in The Gully and Outer Scotian Shelf before and during Active Seismic 
Programs. Environmental Studies Research Funds Report No. 151, 154 p + xx.  
 
In June 2003, JASCO Research Ltd performed underwater sound level measurements as part of a comprehensive 
monitoring program implemented for a Marathon Canada Petroleum ULC (MCP) 3-D marine seismic program located 
on the Scotian Slope off the coast of Nova Scotia. Underwater sound pressure level recordings were made at various 
ranges, depths and directions from the airgun array that was employed for the seismic survey. Recordings were made 
between 26 and 29 June 2003 using ship-deployed hydrophones at locations of opportunity, primarily in the northwest 
corner of the survey region, and at locations within the Gully Marine Protected Area. JASCO processed and analyzed 
the data from these recordings to calculate the peak sound pressure levels, the root-mean-square (rms) sound 
pressure levels, and the energy flux density values that were received. The computed received levels as a function of 
range, depth and frequency are presented in this report. Based on a consideration of these levels the 500 m marine 
mammal safety range boundary, set at the beginning of the program, was revised to 700 m – the safety range that was 
used for the remainder of the seismic survey. The computed received levels were used to validate pre-season acoustic 
modeling results and were found to agree with the model results to within 10 dB re µPa at most ranges and 
frequencies. Some low frequency levels measured at long ranges were as much as 50 dB higher than the model 
results predicted. These discrepancies increased with increasing range and were likely due to artifacts from cable 
strumming and water flow noise. The levels received in the top 100 m of the water column were found to exceed the 
levels received below 100 m depth by approximately 4 dB re µPa due to the effect of a seasonal surface sound 
channel. The measurements recorded in the Gully Marine Protected Area, at a range of approximately 55 km from the 
airgun array, indicated average received peak, rms and energy flux density levels of: 143, 133, and 130 dB re µPa 
respectively at a depth of 77 m; and 136, 127, and 124 respectively at 180 m depth. These sound level results 
comprise one part of an acoustic monitoring study facilitated by Marathon Canada Petroleum for this seismic program 
and complement the additional studies performed by scientists from a Department of Fisheries and Oceans (DFO) 
collaborative research team. Further, these results assist the interpretation of marine mammal observations performed 
by observers from LGL Limited throughout the seismic program. 

INTRODUCTION 

During the summer of 2003, PGS Geophysical on behalf of Marathon Canada Petroleum ULC (MCP) 
conducted a 3-D marine seismic program in blocks EL 2410 (Cortland) and EL 2411 (Empire), located on 
the Scotian Slope off the coast of Nova Scotia. The survey regions were adjacent to the Gully Marine 
Protected Area. The survey vessel, M/V Ramform Viking, employed two Sodera G, 3090 cubic inch airgun 
arrays fired alternately at a depth of 6 m, as the primary seismic source. The seismic tracks were 
approximately 40 km long and were oriented NNW. Figure 3 indicates the location of the survey blocks. 
Seismic acquisition commenced in late June 2003 at the west side of block EL 2410, and proceeded 
eastward. 
 
MCP implemented a comprehensive monitoring program including marine mammal observations and 
underwater sound level measurements to minimize any potential environmental impact of the survey 
program. 
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Figure 3. Map of study area indicating the relevant seismic blocks, the Gully Whale Sanctuary, the 
proposed Marine Protected Area is outlined in red (outside the Sanctuary) and the location of 
Sable Island. 

 
MCP led and facilitated an acoustic monitoring study by JASCO Research Ltd. and collaborated on another 
acoustic study with the Department of Fisheries and Oceans (DFO) and academia. Both acoustic studies 
made use of the research vessel, R/V Strait Signet, operated by Superport Marine Services Ltd. This report 
provides a summary of the data acquired and analyzed by JASCO Research Ltd. 
 
The main objectives for JASCO’s acoustic monitoring program were to: 
 

1) Validate acoustic model results used in pre-season environmental impact assessment reports. 
2) Measure the sound pressure levels propagating horizontally away from the airgun arrays. 
3) Verify the marine mammal safety ranges determined from pre-season acoustic modeling. 
4) Determine the variation of received sound levels with receiver depth. 
5) Measure airgun sound pressure levels received in the Gully. 
6) Determine the effect of a seasonal surface sound channel on sound propagation. 
7) Determine the spectral content of noise from the airguns. 

 
JASCO Research acquired acoustic data between 26 and 29 June 2003. Measurements were taken at 
locations of opportunity, primarily in the northwest corner of block EL 2410. In addition, measurements 
were obtained within the Gully Marine Protected Area. Table 1 summarizes the measurements made. 
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Table 1. Summary of acoustic measurements made from 26-29 June 2003. 

Date 
(2003) 

Time 
(AST) 

Position Notes 

26 June 12h00 
– 

15h00 

43�55.700’N 
58�59.410’W  

• Far-field and whale vocalization recordings 
• 2 Northern Bottlenose spotted near Signet 

26-27 June 20h00 
– 

07h00 

43�34.220’N 
59�23.110’W  

• Near and far-field measurements 
• Viking northwards on line 1090 and southwards on 

line 1430. 
• Signet near 1000 m contour 

27 June 13h00 
-

20h00 

43�35.236’N 
59�28.095’W  

• Near/mid-field measurements 
• Viking northwards on line 1110 and southwards on 

line 1430 
• Signet near 1000 m contour.  

28 June 12h00 
-

14h00 

43�55.410’N 
58�54.900’W  

• Far-field and whale vocalization recordings near OBS 
1Gully N 

28 June 15h00 
-

18h00 

43�53.380’N 
58�57.780W  

• Far-field and whale vocalization recordings in the 
Gully mid way between OBS 1Gully N and 2 Gully S1 

• 1-7 Northern Bottlenose whales spotted near Signet. 
A number of them spent significant time near Signet. 
Video taken 

• 1 Humpback whale spotted near Signet 
29 June 11h00 

-
14h15 

43�53.540’N 
58�55.660W  

• Ambient/Whale vocalization recordings in Gully 
• 1-4 Northern Bottlenose whales observed 
• Viking reports gear trouble – no seismic shots 

 
 
The seismic vessel was in closest proximity to the Gully MPA when acquiring data in the northeast corner 
of block EL 2411 and was located approximately 4.5 km from the outer boundary of the Gully at the point of 
closest approach.  
 
JASCO made measurements at the beginning of the survey to validate modeled marine mammal ‘safety 
ranges’ while the survey vessel was furthest from the Gully. Underwater recordings were made at various 
ranges, depths and directions from the arrays. The data from these recordings were processed and 
analyzed to calculate the pertinent noise metrics. 
 
The noise metrics presented in this report include the peak sound pressure level, the rms sound pressure 
level and the energy flux density value for each recorded airgun event. The rms sound pressure level 
defines the decibel value of the “root-mean-square” amplitude of the time-varying pressure over the 
duration of the pulse. The energy flux density is defined as the time-integral, taken over the duration of the 
pulse, of the instantaneous sound intensity, where the intensity of underwater sound is the flux of acoustic 
energy passing through a unit area per unit time. 
 
The frequency distribution of the acoustic energy was also taken into consideration because marine 
mammals are generally more sensitive to certain frequencies than others. For example, seismic noise at 
very low frequencies may be outside the audible frequency range of certain whales. 
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MATERIALS AND METHODS 

RECORDING EQUIPMENT 

The acoustic recording system used for the present survey consisted of the following components: 
1) Four Reson TC4043 calibrated hydrophones, with nominal sensitivity -201 dB re V/µPa ± 1 dB. 
2) One Reson TC4032 calibrated hydrophone, with nominal sensitivity -170 dB re V/µPa ± 1 dB. 
3) Two 50-ohm, shielded hydrophone cable, 100m lengths. 
4) One dual signal, faired and shielded, Kevlar-reinforced hydrophone cable, 200 m length. 
5) Ithaco 451M programmable gain amplifiers (-10 dB to +80 dB in 1 dB steps) with built-in 

programmable high-pass filters (1 Hz to 1 kHz in decade steps). 
6) Marantz PMD690 digital audio recorders, sampling at 48-kHz on two channels with 16-bit 

resolution. 
7) Quatech PCMCIA data acquisition system, capable of sampling at 100-kHz on one channel with 

16-bit resolution.  
8) Krohn-Hite Model 3342R programmable filter. 

RECORDING PROCEDURES 

The airgun array pressure signals were recorded using multiple hydrophones deployed vertically off the 
stern of the R/V Strait Signet. A faired and shielded sub-sea cable with an integrated strength member was 
used to support and transmit the signal from the deepest hydrophone, which was deployed at a depth of 
approximately 180 m. The sub-sea cable was passed over a pulley mounted on an A-frame at the stern of 
the vessel. The cable was attached to a float with sufficient slack to help take up the tension due to ship 
heave and to prevent damage to the cable. Two shallower hydrophones were deployed from shorter 
subsea cables, also off the stern of the vessel, at depths of 30 and 80 m. Weights were attached to the 
ends of the cables to keep the hydrophones as deep as possible in the surface currents.  
 
To perform acoustic measurements, the Strait Signet was positioned at a location ahead of and adjacent to 
the seismic line along which the Ramform Viking was acquiring data. The Signet shut down its engines 
during recordings to eliminate ship noise. Airgun events were continuously recorded at multiple depths as 
the seismic vessel approached, passed and departed from the Signet’s position. Data were recorded on 
multiple seismic tracks as the Viking traversed from deep to shallow and shallow to deep water. This 
permitted the collection of data from multiple aspects relative to the seismic airgun array. Data were also 
recorded at locations in the Gully, corresponding with known positions of ocean bottom seismometers, as 
the Viking acquired data in the western end of block EL 2410. For the data analysis, ranges between the 
Signet and the Viking were determined from logged GPS and navigation data. 

PRESSURE WAVEFORM DATA ANALYSIS PROCEDURES 

Digital signal analyses of the airgun recordings were performed to obtain peak, RMS and energy flux 
density sound levels for all identified airgun pulses. Prior to processing, an fft filter was applied to the data 
to exclude data below 8 Hz and above 10 kHz. The steps involved for processing the filtered data from 
each recording track were as follows: 

1) Airgun pulses were located in digital recordings by an automated peak-level detection algorithm. 
2) Signal amplitudes were translated to microPascals (µPa) by applying hydrophone sensitivity, 

preamplifier and amplifier gains and digital conversion gain. 
3) Maximum zero-to-peak sound pressure levels were calculated for each airgun pulse in dB re 1 µPa 

by reading the maximum pressure value. 
4) Cumulative energy flux density functions were computed by integrating square pressure through 

the pulse arrivals. 
5) 5% and 95% airgun energy density levels were extracted from the cumulative energy density 

function. 
6) RMS levels were computed by dividing the airgun energy flux density, received between the 5% 

and 95% times, by the corresponding time difference. The square root of this difference was 
calculated. 
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SPECTRAL LEVEL DATA ANALYSIS PROCEDURES 

Spectral levels for selected airgun pulses were computed in 1/3-octave bands. The steps involved for 
processing data from these recording were as follows: 
 

Pressure versus time waveforms were transformed to the frequency domain via Fourier Transform. 
 

1/3 octave band energy flux density levels were calculated by numerically integrating the squared 
Fourier coefficients in the consecutive 1/3-octave bands with centre frequencies between 10 Hz 
and 1000 Hz. The levels were converted to dB re 1 µPa. Note that the presented band levels are 
not spectral levels (i.e. they are total band levels and are not referenced to 1 Hz). 

 

RESULTS 

CLOSE RANGE MEASUREMENTS 

On 26 June and 27 June 2003 acoustic measurements were made at close range (within 15 km) of the 
airgun arrays. The Signet remained in close communication with the Viking at all times so as not to drift into 
the Viking’s course. The streamer configuration, foggy weather conditions, and changes to the Signet’s drift 
rate were the limiting factors in deciding how close the Signet could be positioned to the seismic track.  

 
 

    

 

 
 

 
 

Figure 4. Viking (green lines) and Signet (pink lines) tracks during close range recordings on 26 June 
and 27 June 2003. Viking was sailing along: Line 1090 (top left), Line 1110 (top right), and 
Line 1430 (bottom left). 
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The nearest range at which measurements were obtained was 2.6 km broadside to the array. Three close 
range pass-by recordings were carried out as the Viking traversed seismic lines 1090, 1110, and 1430.  
Figure 4 shows the tracks followed by each vessel during the three recordings. The Viking was travelling 
southwards along line 1430 and was travelling northwards along lines 1090 and 1110. 
 
All data sets were processed to compute peak, RMS, and energy flux density levels as a function of range 
from the seismic vessel. As an example Figure 5 illustrates the calculated metrics for the levels received at 
three hydrophone depths (30 m, 66 m and 177 m) while the Viking traversed line 1110. As expected, for 
each pass-by, sound levels were observed to decrease with range due to spreading of the sound energy as 
it propagated through the water. 
 

   

 
Figure 5. Peak, RMS and Energy Flux Density levels versus range measured at three hydrophone 

depths while the Viking was sailing Northwards acquiring data on seismic line 1110. 

 

It was noted that inside 4 km range the direct path arrivals were significantly separated in time from the 
bottom reflected arrivals. These arrivals moved closer together in time with increasing range and eventually 
converged at a range of approximately 4 km. At ranges less than 4 km the direct path arrivals were 
observed to have high amplitude and short duration while the bottom reflected arrivals had lower amplitude 
and greater duration. 
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Figure 6. Pressure waveform from an airgun shot received at a distance of 2.59 km. 

 
Figure 7. Pressure waveform from an airgun shot received at a distance of 5 km. 

 
The pressure signature shown in Figure 6 is from a pulse that was received at a range of 2.59 km 
broadside of the seismic vessel. There are two distinct sets of arrivals present in the data with a separation 
of 0.3 seconds. A high-amplitude, direct path pulse with 0.1 seconds duration is followed by lower 
amplitude bottom reflected pulses with combined duration of 0.7 seconds. The pressure signature shown in 
Figure 7 was recorded at a distance of 5 km from the seismic vessel. Here, the arrivals have converged 
and the composite pulse has 1.5 seconds duration. Since RMS levels are time-averaged over the duration 
of the pulse, the longer duration composite pulses will give lower RMS values than the short duration, high 
amplitude, direct path pulses. Metrics computed at ranges less than 4 km were computed based only on 
the direct path arrivals. 
 
The maximum measured sound levels were received at 30 m depth and at a range of 2.6 km. At this range 
the measured sound levels were: 

• Peak Level: 175 dB re µPa 
• RMS (direct path): 167 dB re µPa 
• RMS (total): 158 dB re µPa 
• Energy flux density: 152 dB re µPa 

MARINE MAMMAL SAFETY RANGES 

The areas where specific sound level thresholds are exceeded commonly define impact zones for marine 
mammals. In the United States, current National Marine Fisheries Service (NMFS) policy regarding 
exposure of marine mammals to high-level sounds is that cetaceans and pinnipeds should not be exposed 
to impulsive sounds exceeding 180 and 190 dB re 1 µPa (rms), respectively (NMFS, 2000). An additional 
criterion that is often used in assessing impacts is the 160 dB re 1 µPa SPL; disturbance effects on valued 
ecosystem components are often observed at this level. Note airgun noise at 160 dB re 1 µPa is still 
audible to most species of whales and seals. 
 
Pre-season modeling estimates of the maximum distances to sound level thresholds 180 dB and 
190 dB re µPa were 405 m, 120 m respectively (Austin et al, 2002). Accordingly, the operational safety 
range was established as 500 m, subject to further field confirmation. Measurements were made during the 
first few days of seismic acquisition as close to the airgun arrays as possible to verify pre-season estimates 

Bottom Reflection 

Direct Path 

Bottom Reflection 

2nd 
Direct Path 
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and to confirm safety ranges to be implemented during the remainder of the seismic program. The values 
presented in Table 2 below were computed based on an analysis of the measured sound levels, and an 
extrapolation approach incorporating short-range transmission loss modeling to estimate the levels at 
ranges closer than it was logistically possible to measure in the field. The marine mammal safety ranges 
were revised to reflect the levels inferred from the measured data and were reported back to the ship for 
implementation. Safety radii at 300 m and 700 m, corresponding respectively to the 190 dB re µPa and 
180 dB re µPa (RMS) thresholds, were recommended. These safety radii estimates are conservative as 
they are based on the maximum ranges to which levels of 180 dB re µPa and 190 dB re µPa were 
observed in the data analysis, with an additional 50 m added to these ranges to take into account 
reasonable uncertainties in the source and receiver depths, and the fluctuations in the measured data.  
 
Table 2. Distances to sound level thresholds at three hydrophone depths. These distances were 

obtained by fitting a modeled sound level curve to data obtained at the 2.59 km CPA. The 
160 dB ranges were determined directly from measurements. 

Direct Path RMS Levels Composite RMS Levels  
30-m Depth 66-m 

Depth 
177-m 
Depth 

30-m 
Depth 

66-m 
Depth 

177-m 
Depth 

190 dB 175 m 200 m 255 m 105 m 115 m 115 m 
180dB 275 m 330 m 650 m 180 m 220 m 245 m 
160 dB N/A N/A N/A 5123 m 5163 m 6393 m 

 
LONG RANGE PASS-BY DATA 

Long range measurements were obtained on 27 June 2003 with the Signet positioned to the east of 
seismic line 1430. Sound level measurements were made over the entire seismic track as the Viking sailed 
southward along line 1430 with the airguns firing. Two hydrophones were deployed to depths of 74 m and 
171 m. The Viking sailed past the Signet, with a CPA of 3.68 km, and then continued past the Signet to a 
maximum range of 40.9 km, traveling from shallower to deeper water as it surveyed the track.  
Figure 8 shows a plot of the positions of the Viking and the Strait Signet during the monitoring of this 
seismic track. 
 

 

 
 

Figure 8. Viking (green line) and Signet (pink line) tracks during far-field data measurements on 
27 June 2003. Viking is sailing along seismic line 1430. 
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Sound levels received while the Viking was approaching the Signet were slightly higher than those received 
after the Viking had passed the CPA. Peak, RMS, and energy flux density values were calculated for the 
entire track and the results are shown in Figure 9. As expected, the levels are seen to decrease with range. 
At ranges greater than approximately 12 km, the levels received at the 74 m-deep hydrophone were noted 
to exceed the levels at the 171 m-deep hydrophone by approximately 4 dB. This is likely due to a seasonal 
surface sound channel that is discussed later in this report. 
 
 

 
 

Figure 9. Peak, RMS, and energy flux density levels plotted versus range for hydrophone at 74 m 
depth (left) and 171 m depth (right). 

LONG RANGE MEASUREMENTS IN THE GULLY 

The Strait Signet sailed to the Gully on 28 June 2003 to measure the far field acoustic energy that 
propagated into the proposed Gully Marine Protected Area. Acoustic data were recorded at various 
locations within the Gully, in close proximity to the positions of two of the OBS instruments that had 
previously been deployed by the DFO collaborative research team. It was intended to take data at each of 
the six OBS locations, however, technical problems onboard the Viking precluded this. 
 
The Signet had its engines shut down and drifted freely while recording the sound levels within the Gully. 
The Viking continued to acquire seismic data in the western end of block EL 2410, approximately 55 km 
away from the Signet’s location. 
 
Peak, RMS and energy flux density sound metrics were computed for the data recorded in the Gully. 
Average levels received at the 77 m hydrophone were 143.1 dB re µPa (peak), 132.6 dB re µPa (RMS), 
and 129.7 dB re µPa (energy flux density). Average levels received at the 180 m hydrophone were 
135.6 dB re µPa (peak), 126.5 dB re µPa (RMS), and 123.5 dB re µPa (energy flux density). The levels at 
the 77 m hydrophone were consistently about 5 dB greater than the levels at the 180 m hydrophone. This 
is believed to be due to the seasonal surface sound channel. 

ACOUSTIC MODELING 

One of JASCO Research’s roles in the acoustic monitoring program was to verify the accuracy of the pre-
season acoustic model results. As the monitoring was carried out early in the seismic program when the 
seismic vessel was not close to the pre-season modeled source positions, additional post-measurement 
modeling was performed to compare with the direct measurements made. The RAM parabolic equation 
transmission loss model was run with a source placed at the true Viking CPA position: 43°34.32’N, 
59°24.43’W to simulate the long range data set collected on 27 June 2003. Figure 10 presents the sound 
speed profile that was input to the model and was taken from a CTD cast that was performed onboard the 
Viking on 29 June 2003. 
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Figure 10. Sound speed profile as measured on 29 June 2003. 

 
Sound transmission loss along seismic line 1430 was modeled in both directions from the CPA to the ends 
of the line. Modeled energy flux density curves were generated by applying the transmission loss model 
results to the modeled levels from a coherent airgun array source model. Figure 11 shows the energy flux 
density values measured at locations up-slope of the CPA overlain with the model-derived received levels 
at both receiver depths. The modeled energy flux density levels are observed to match the measured data 
to within approximately 7 dB re µPa. 
 
 

 
Figure 11. Energy flux density levels (broadband) measured at 74 m depth (left) and 171 m depth 

(right), plotted with modeled energy flux density values. Source located up-slope of receiver. 

 
Figure 12 shows the results at locations down-slope from the CPA. The model results are well matched to 
the measured data at most ranges. The maximum discrepancy between the modeled and the measured 
energy flux density values is approximately 10 dB re µPa, however, at most ranges the values agree to 
within 5 dB.  
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Figure 12. Energy flux density levels (broadband) measured at 74 m depth (left) and 171 m depth 

(right), plotted with the modeled energy flux density levels. Source located down-slope of 
receiver. 

 
To investigate the accuracy of the model and determine any frequency dependence of the model/data 
discrepancies, the results were separated into third-octave band levels. At frequencies below 25 Hz 
discrepancies of as much as 50 dB re µPa were observed between the sound levels measured at 180 m 
depth and model data. However, at frequencies greater than 25 Hz, model results matched measured data 
to within 2-3 dB. The large discrepancies at low frequencies may be due to sources of noise in the 
measured data including strumming noise from vibration of the hydrophone cable. These discrepancies 
also would be less apparent at the shallower depth because the airgun signal levels are higher there and 
would dominate strumming noise.  

SPECTRAL ANALYSIS 

Spectral analysis of airgun events at various ranges was performed to characterize frequency-dependence 
of transmission loss. The spectral data were analysed in third-octave bands to compare band-limited model 
predictions with measurements. 
 
Figure 13 presents spectral plots, showing third-octave band levels, for the long range pass datasets. At 
ranges less than 15 km the levels recorded at 74 m depth were consistent with the levels recorded at 171 
m depth. However, at ranges beyond 15 km, and at frequencies greater than 100 Hz, the third-octave band 
levels at 74 m depth were observed to be approximately 5 to 10 dB higher than those at 171 m depth. This 
discrepancy is believed to be due to ducting by the surface sound channel that produces higher levels in 
the top 100 m of the water column. This is discussed later in the report. 
 
It is also noted that most of the energy in the airgun pulses was composed of low frequency energy (below 
100 Hz). It was not possible to accurately determine ambient underwater sound levels due to contaminating 
noise produced mainly by generators that were operating continuously onboard the recording vessel. 
However, based on past studies in the area (Desharnais and Collison, 2001) third octave ambient levels 
between 10 Hz and 1000 Hz can be expected to be between 60 and 90 dB re µPa2/Hz. Above 100 Hz, the 
band levels decreased toward ambient with increasing frequency. The third-octave band levels were also 
seen to decrease with increasing range from the airgun array. 
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Figure 13. Third-octave frequency band levels of an airgun pulse received at 4 km range (left) and 

30 km range (right) with source located down-slope of the receiver. 

 

DISCUSSION 

ACOUSTIC MODEL VALIDATION 

The accuracy of transmission loss predictions made using the RAM Parabolic Equation transmission loss 
model were examined through both broadband and third-octave analyses. Modeled sound levels as a 
function of distance from the airgun arrays were determined by applying transmission loss predictions from 
RAM to source level estimates produced by an airgun array source model. The absolute sound level results 
produced by this modeling approach were found to be accurate at both close ranges and long ranges for 
frequencies above 32 Hz. Discrepancies between the measured and the modeled data varied between 2 
dB re µPa and 10 dB re µPa for those frequencies. The measurements also matched model results well 
below 25 Hz at close ranges. However, measured sound levels at 48-57 km exceeded model results by 
more than 10 dB for frequencies less than 32 Hz. This discrepancy is attributed to excess sound energy in 
the measurements that probably including inherent strumming on the long hydrophone cables and water 
flow noise on the hydrophones themselves. This measurement noise level was normally below the airgun 
sound levels, particularly at close ranges where the received airgun signal was strong and overpowered 
any measurement noise. At long ranges where the airgun signal to measurement noise ratio was small, the 
measurement noise contaminated the received airgun levels and the low frequency measurements 
exceeded the model predictions.  

SOUND PRESSURE LEVELS AS A FUNCTION OF RANGE 

The maximum measured sound levels were received at the closest range monitored: 2.6 km, at a depth of 
30 m. The levels are shown below. All received levels were observed to decrease with increasing range. 
 
  Maximum sound levels monitored (Range 2.6 km) 

Depth 
(m) 

 Peak Level 
(dB re µµPa) 

RMS Level, Direct 
Path (dB re µµPa) 

Energy Flux Density (dB 
re µµPa) 

30 174 167 152 
 

MARINE MAMMAL SAFETY RANGES 

Marine mammal safety range boundaries were established from analysis of near field measurements. The 
resulting 180 and 190 dB re µPa ranges were all significantly less than the 4 km boundary within which the 
direct path was appreciably separated in time from the bottom reflected path. Therefore, our 
recommendation was to use the radii corresponding to the direct path RMS levels when establishing 
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marine mammal safety ranges. Using the direct path RMS levels will result in safety radii that correspond to 
a ‘worst case’ scenario of sound propagation. Safety radii at 300 m and 700 m, corresponding respectively 
to the 190 dB re µPa and 180 dB re µPa (RMS) thresholds, were recommended.  
 
We note these distances are greater than the pre-season model estimates. However the distances based 
on measurements are significantly extrapolated, due to the closest measured range being over 2.5 km, and 
consequently cannot be confirmed as being more correct than the pre-season model results. The safety 
distances based on measurement extrapolations were used during the seismic as a precautionary measure 
and were based on the maximum sound levels that were recorded in the field. 
 
SOUND PRESSURE LEVELS AS A FUNCTION OF DEPTH 

Measurements of the sound levels produced by the airgun arrays were made at three depths: 
approximately 30m, 80m, and 180m. Sound levels at ranges between 2.6 km and 10 km were similar at 
these three depths. At ranges beyond 10 km the effect of the surface sound channel began to be apparent 
and the sound levels measured at the mid-depth hydrophone and the surface hydrophone exceeded those 
at the deepest hydrophone by up to 4 dB re µPa. A difference of 5 dB between these depths was estimated 
by pre-season modeling. 

MEASUREMENTS IN THE GULLY 

Measurements of the sound levels produced by the airgun arrays were made at two depths and at various 
locations in the Gully. During these measurements the seismic vessel was approximately 55 km away from 
the receivers. The average levels received while recording in the Gully are shown in the following table.  
 

Depth 
(m) 

Average Peak Level 
Received 

(dB re µµPa) 

Average RMS Level 
Received 

(dB re µµPa) 

Average Energy Flux 
Density Level Received 

(dB re µµPa) 

77 143 133 130 

180 136 127 124 

 

SEASONAL SURFACE SOUND CHANNEL EFFECTS 

A strong surface sound channel is known to exist in the waters of the Scotian Slope during the winter and 
early months of spring (winter channel). The winter channel exists because surface waters are coolest at 
the surface. This leads to the condition where the water surface itself is the upper bound of the channel. 
The winter channel is expected to strongly trap airgun noise because the source depth is close to the depth 
of minimum sound speed. The profile measured on 29 June is different because the surface water has 
warmed; the upper part of the channel is caused by a positive sound speed gradient from 50 m depth to the 
surface. This channel can trap some energy of the airgun source (at the surface) only because the sound 
speed at the surface is slightly lower than at the bottom of the channel (at approximately 150 m). This 
channel also can support only near-horizontal propagation because steeper-propagating sound will 
penetrate the lower boundary (per Snell’s law). However, the sound that is trapped in this channel will 
interact often with the channel boundaries leading to mode-type propagation. It is subject therefore to a 
low-frequency cut-off. 
 
Pre-season model results showed that the winter channel increased sound levels in the top 100 m of the 
water column by approximately 5 dB for ranges greater than 10 km at frequencies greater than 
approximately 200 Hz. The measured data, presented above, confirm that the levels received within the 
expected sound channel region (obtained on the 74 m-deep hydrophone) are approximately 4 dB higher 
than levels received below the expected surface sound channel (on the 171 m-deep hydrophone) at ranges 
beyond approximately 12 km. 
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A seasonal surface sound channel was noted to exist in the top 100 m of the water column during the 
acoustic monitoring period. This sound channel weakly encompassed the source depth since it extended to 
a depth just below the surface. Even so, sound levels measured at depths within the channel were 
observed to be 4 dB re µPa higher than levels measured just below the lower boundary of the sound 
channel. 

SOUND PRESSURE LEVELS AS A FUNCTION OF FREQUENCY 

Third-octave band frequency analysis was performed for airgun pulses received at various ranges. The 
majority of the energy was found to occur at frequencies below 100 Hz. Spectral power was seen to 
decrease with increasing frequency above 100 Hz. 
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ABSTRACT 

Moulton, V.D. and G.W. Miller. 2005. Marine mammal monitoring of a seismic survey on the Scotian Slope, 2003. 
Pages 29-40, In, K. Lee, H. Bain, and G.V. Hurley, Eds. 2005. Acoustic Monitoring and Marine Mammal Surveys in The 
Gully and Outer Scotian Shelf before and during Active Seismic Programs. Environmental Studies Research Funds 
Report No. 151, 154 p + xx.  
 
Marathon Canada Petroleum ULC (MCP) conducted a marine 3-D seismic program offshore Nova Scotia, on the 
Scotian Slope (Exploration Licenses 2410 and 2411) during the late spring, summer and early autumn of 2003. Marine 
seismic projects use airguns that emit sounds into the water to acquire data to determine the presence and likely 
locations of geological structures that might contain hydrocarbon deposits. Given the auditory and behavioural 
sensitivity of marine mammals to underwater sounds, seismic projects have the potential to cause impacts. Many 
species of dolphins, seals, baleen and toothed whales inhabit the waters of the Scotian Slope, including species such 
as the northern bottlenose whale (Hyperoodon ampullatus), that are considered at risk by the Committee on the Status 
of Endangered Wildlife in Canada. 
 
As the area where MCP conducted its seismic program was located near the Gully, a submarine canyon recently 
afforded Marine Protected Area status, concerns were expressed during consultations that operations could affect 
marine mammals. To address this issue, a monitoring and mitigation program was designed to assess and minimize 
the potential effects of seismic operations. Monitoring consisted of observations from the seismic ship and acoustic 
measurements. Some mitigation measures included: (1) ramp up of the airgun arrays, (2) airgun array shutdowns when 
baleen and northern bottlenose whales were sighted within or closely approaching a “safety zone” around the seismic 
vessel, (3) airgun array shutdowns during line changes, and (4) reducing the sound energy propagating into the Gully 
MPA via orientation of seismic lines and minimizing the influences of a surface sound channel. Monitoring from the 
seismic ship documented relatively small zones of avoidance around the operations area for baleen whales and 
toothed whales, and little evidence of avoidance by dolphins. Given the relatively small number of observations, 
particularly for toothed whales, some results should be treated cautiously. 

INTRODUCTION 

Marathon Canada Petroleum ULC (MCP) conducted a marine 3-D seismic program offshore Nova Scotia, 
on the Scotian Slope (Figure 14) during May to October 2003. Marine seismic projects use sources that 
produce acoustic signals in the water column. Given the known auditory and behavioural sensitivity of 
many marine mammals to underwater sounds (Richardson et al., 1995), marine seismic projects have the 
potential to affect them. The waters offshore of the Scotian Slope are occupied by many species of 
dolphins, seals, baleen and toothed whales, including some species considered at risk by the Committee 
on the Status of Endangered Wildlife in Canada (COSEWIC). The blue whale (Balaenoptera musculus) is 
considered endangered (COSEWIC, 2003) and the Scotian Shelf population of northern bottlenose whales 
is a candidate species for endangered status (COSEWIC, 2002). The area where MCP conducted its 
seismic program is located near the Gully, a submarine canyon afforded Marine Protected Area (MPA) 
status on 14 May 2004 and an area considered primary habitat for northern bottlenose whales (COSEWIC, 
2002). In order to address concerns about the potential effects of seismic exploration on marine mammals, 
especially those species considered at risk, MCP and LGL Limited developed a monitoring and mitigation 
program. This program was implemented by LGL with the assistance of the seismic contractor, PGS. 
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The monitoring program consisted of two primary components: acoustic measurements (see Austin et al. 
(2004) and Austin and Carr (2005)) and ship-based observations from the seismic vessel. Its overall 
objectives were designed to: 
 

1) address existing data gaps (e.g., marine mammal distribution and abundance, sound propagation) 
2) answer questions about potential seismic effects on marine mammals in the study area 
3) address the concerns of stakeholders and regulators (e.g., provide a monitoring and mitigation 

program that minimizes potential impacts on marine mammals) 

SEISMIC PROGRAM DESCRIBED 

MCP’s marine 3-D seismic program in 2003 consisted of streamer surveys conducted on the Scotian Slope 
in Exploration Licenses (EL) 2410 (Cortland) and 2411 (Empire). The surveys were conducted by PGS from 
the seismic ship MV Ramform Viking (Viking). The acoustic sources were two 3090 in3 arrays consisting of 
28 airguns with individual gun volumes ranging from 20 to 250 in3. The source level of the array was 
estimated as 228 dB re 1 µPa (rms) at 1 m (broadband: 1 Hz - 512 Hz; Austin and Carr (2005). Ten six-km 
long streamers spaced 100 m apart from each other were towed behind the vessel to record the seismic 
data. Overall, data were acquired in an area approximately 2160 km2. The seismic vessel was deployed 
from Halifax on 21 May 2003 and began seismic surveying operations on 20 June 2003. Seismic acquisition 
ended on 15 October and the Viking returned to Halifax on 17 October 2003. Water depths within the 
surveyed areas ranged from approximately 200 to 4800 m and averaged about 2100 m. 
 

 
 

Figure 14. Study area showing the area where seismic data were acquired (MCP Seismic Area), the 
area used for analysis of seismic data (Seismic Analysis Area), the Gully MPA, and the 
broader area (Overall Area) where the seismic ship sailed in 2003. 
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ACOUSTIC MEASUREMENTS 

JASCO Research Ltd. (JASCO) prepared a pre-season report that outlined estimates of sound levels from 
the airgun array used in MCP’s 2003 seismic program. Based on acoustic modeling, a 500-m safety zone 
(estimated zone within which received levels of seismic sound were 180 dB re 1 µPa (rms) or higher19) was 
used early in the monitoring program. From 26-29 June 2003, JASCO carried out field studies to obtain 
acoustic recordings of the underwater sounds generated by the 3090 in3 array. JASCO prepared a 
preliminary report on the results of the acoustic measurements and recommended that the pre-season 
safety zone of 500 m should be increased to 700 m as a precautionary measure (details in final report: 
Austin et al. 2004). The 700-m safety zone was implemented beginning 31 July 2003 through to the end of 
the seismic program. Data acquired during acoustic monitoring were also used to determine the levels of 
seismic sounds to which marine mammals were exposed, including marine mammals that occurred within 
the Gully MPA. Sound levels of the airgun array pulses were measured at various distances from the 
seismic ship and at various locations in and near the survey area, including a location within the Gully MPA. 
Details on transmission loss calculations and the received sound levels reported in the Results section are 
provided in Austin et al. (2004) and in Austin and Carr (2005). 

METHODS 

SHIP-BASED MONITORING 

Marine mammal observers (MMOs; an LGL biologist and trained Fisheries Observer from the Oil and Gas 
Observer Program) were stationed on the seismic vessel throughout the seismic exploration period from 21 
May to 17 October 2003. These observers monitored the occurrence and behaviour of marine mammals 
near the seismic vessel during all daytime periods when the airgun array was operating. Their duties 
included watching for and identifying marine mammals; recording their numbers, distances and reactions to 
the seismic operations; initiating mitigation measures when appropriate; and reporting the results. 
 
Whenever airgun operations were underway, or when they were expected to start within 30 min, an 
observer watched continuously for marine mammals. To compare marine mammal sighting rates during 
periods with and without airgun operations, observers were normally on duty at times when the seismic 
vessel was underway but the airgun arrays were not operating. The observer scanned around the vessel 
using unaided vision and 7 x 50 Fujinon FMTRC-SX binoculars that were equipped with reticles to measure 
depression angle relative to the horizon (an indicator of distance). While on watch, the observers kept 
systematic written records of the seismic activity and environmental conditions. Additional data were 
recorded when marine mammals were observed. For all records, the date, time, and observer on duty were 
recorded. Latitude, longitude and information about seismic activity were available from the computer 
monitors located on the bridge. Operational activities that were recorded included the survey line number 
being shot and the type of seismic activity—ramping-up, line shooting, seismic testing, shutdowns and 
other. Environmental conditions that were recorded included wind force (Beaufort Scale), visibility (km), 
glare (severity, and location relative to a clock face where 12 o’clock represented the heading of the 
vessel), and water depth (m). Standardized codes were used for most of these records, but written 
descriptive comments were usually added as well. 

MITIGATION MEASURES 

MCP adopted a number of mitigation measures to minimize potential impacts of the marine seismic 
exploration program on marine mammals. These mitigation measures included: 
 

1) gradual ramp up (“soft start”) of the airgun arrays when resuming airgun operations after they had 
been shut down, 

                                                   
19  Current United States National Marine Fisheries Service (NMFS) policy regarding exposure of marine mammals to high-level 
sounds is that cetaceans should not be exposed to impulsive sounds exceeding 180 dB re 1 µPa (rms) (NMFS 2000). This 
criterion has been used in establishing the safety (power down) zones for seismic surveys in some parts of Canada, including 
MCP’s seismic program. 
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2) airgun array shutdowns when baleen and northern bottlenose whales were sighted within or closely 
approaching a “safety zone” around the seismic vessel (shutdowns were not implemented for other 
species of marine mammals given that they are not considered “at risk” by COSEWIC), 

3) airgun array shutdowns during line changes, 
4) beginning the seismic program in the western portion of the seismic area to minimize sound 

propagation into the Gully MPA at a time of year when sound propagation for frequencies greater 
than 200 Hz was enhanced (due to surface sound channel) relative to later in the summer, 

5) orienting seismic lines in a NNW-SSE orientation, which was optimal for reducing the sound energy 
propagating into the Gully MPA, 

6) no use of airguns within the MPA, and 
7) no entry of the vessel into the MPA except for line turns or due to weather conditions. 

DATA ANALYSES 

Marine Mammal Groups 

Sighting data were usually grouped separately for baleen whales, dolphins and toothed whales (sperm and 
northern bottlenose whales). Data could not be pooled across all marine mammal species given the 
different hearing capabilities of marine mammals (Au et al. 2000), and hence potential different reactions to 
seismic sounds. Most results and all statistical tests are based on marine mammal sightings (total number 
of singletons or groups seen) versus the number of individual marine mammals to avoid pseudoreplication 
problems. 

Geographic Areas 

Analyses considered two geographic areas: 
 

1)  ‘Overall Area’ where the ship sailed (see  
2) Figure 14). This region includes all areas where marine mammal observations were conducted by 

the MMOs, including areas the ship sailed to avoid poor weather. It includes areas where seismic 
operations were conducted (MCP Seismic Area) and areas where the Viking sailed to fix seismic 
gear and/or avoid bad weather. Data collected in this larger area were primarily used for 
investigating overall temporal and geographic patterns of marine mammal occurrence. 

 ‘Seismic Analysis Area’ (7172 km2) includes the MCP Seismic Area (2253 km2) where seismic data 
were actually acquired plus a zone (4919 km2) around this area which encompassed the area 
where the Viking made the majority of its turns at the end of seismic lines (Figure 14). Data 
acquired in this area were used when analyzing the potential influences of seismic activity on 
marine mammals. 

Sighting Conditions 

To account for the influences of sighting conditions on marine mammal sighting rates, data were excluded 
when conditions were extremely poor. Data were excluded when winds exceeded Beaufort 5 and visibility 
was less than 1 km. 

Seismic Categories 

Sightings and observation effort were divided into the following general categories based on airgun activity: 
“no guns”, “ramping up”, “array” and “testing”. “No Guns” encompassed periods when no guns were active 
(this category is further subdivided in Moulton and Miller, 2004). “Ramp up” consisted of periods when the 
number of operating airguns was gradually increased over an approximate 30-min period after the array 
had been inactive for a period. “Array Seismic” was defined as those times when the full seismic arrays 
were firing (excludes Ramp up and Testing). “Testing” consisted of periods when the seismic operator was 
checking the status of various airguns. An additional category termed “All Seismic” was defined as all 
times when any airguns were active; this included periods of ramp up, testing and array seismic. 
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RESULTS AND DISCUSSION 

SURVEY EFFORT 

Observers were stationed aboard the seismic vessel during the months of May – October 2003 to monitor 
marine mammals in the area, and to implement mitigation measures. Observation hours (in the ‘Overall 
Area’) during daylight periods from the Viking totaled 1598.2 h along 16042 km of ship trackline. More 
observation effort occurred during non-seismic periods than during periods of airgun operations, including 
line seismic, ramp-up, and testing (1044.6 h without airguns operating vs. 553.6 h with). Within the ‘Seismic 
Analysis Area’ where seismic data were acquired and the Viking made turns for line changes, observation 
hours totalled 983.4 h along 10270 km of trackline. Within this area more observation effort occurred during 
periods of airgun operations than during non-seismic periods (552.0 h with airguns operating vs. 431.4 h 
without airguns). Combining periods when visibility was < 1 km and sea state exceeded 5 (and when these 
data were not recorded) resulted in the exclusion of 278.3 h of observations in the ‘Seismic Analysis Area’. 

DOLPHINS 

Distribution, Numbers, and Seasonal Patterns 

Dolphins were the most frequently encountered marine mammal during observations from the Viking. Six 
species of dolphins were identified during the MCP monitoring program (Figure 15). These included (in 
order of decreasing abundance in the Overall Area) long-finned pilot whales (Globicephala melas; 74 
sightings), short-beaked common (Delphinus delphis; 27), Risso’s (Grampus griseus; 7), striped (Stenella 
coeruleoalba; 3), Atlantic spotted (Stenella frontalis; 2), and Atlantic white-sided (Lagenorhynchus acutus; 
2) dolphins. Dolphins were sighted throughout the study period (May to October) in the Overall Area but 
were sighted at higher rates in October and September and in water depths of 1000-2000 m. Pilot whales 
comprised most of the dolphin sightings and were sighted in all months (May-October) and at highest rates 
in water depths of 1000-1500 m. Common dolphins were sighted primarily in June-August and most 
frequently in water depths of 1500-2000 m. There were seven sightings of Risso’s dolphins, all but one of 
these in September and October and all in water depths ranging from 1155 to 3589 m. The remaining 
dolphin species (striped, spotted and white-sided) were all sighted in deeper waters (> 1100 m) with the 
exception of one striped dolphin sighting (eight individuals) in 330 m of water. 
 
Reactions to the MCP Seismic Program 

Dolphins were consistently observed from the Viking during periods when the airguns were active, 
and quite often approached the Viking during seismic operations. There was no indication that the 
likelihood for a dolphin to “swim away” was higher during seismic operations vs. non-seismic periods 
insofar as could be determined by visual observations from the seismic ship (Table 3). Some dolphins 
were observed bow riding and exhibiting feeding behaviour during seismic operations and those near 
the bow of the Viking were located approximately 350 m from the airgun arrays. Dolphin sighting 
rates (Table 3) were higher during Array Seismic (0.17 sightings/h) and All Seismic (0.17 sightings/h) 
than during periods of No Guns (0.13 sightings/h); although the differences were not statistically 
significant (Wilcoxon’s matched-pairs signed-ranks: Ts = 35.5, n = 9 biweekly periods, P > 0.25 for No 
Guns vs. Array Seismic; Ts = 37, n = 9 biweekly periods, P > 0.25 for No Guns vs. All Seismic). 
Despite the higher sighting rates during seismic periods and the seemingly “positive” behavioural 
reactions by some dolphins, the radial distances at which dolphins were initially sighted were, on 
average, significantly smaller during periods of No Guns (mean = 854 m) than during periods of Array 
Seismic (mean = 985 m; Mann-Whitney U = 1010, n = 41, 61, P = 0.05) and All Seismic (mean20 = 
1073 m; Mann-Whitney U = 1065, n = 41, 67, P = 0.025). These findings suggest that some dolphins 
exhibited localized avoidance of the seismic operations. 
 
 

                                                   
20 This value was incorrectly reported as 1173 m in Moulton and Miller (2004). 
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Figure 15. Distribution of dolphin sightings (including those seen during periods of poor visibility 
and high sea states) in the ‘Seismic Analysis Area’. 

Received Sound Levels during MCP Seismic Program 

During seismic operations, 32 (382 individuals) of the 70 (1128 individuals) dolphin sightings were 
sighted by observers at distances within the 700-m safety zone. It is possible that the 382 individuals 
within 700 m of the Viking were exposed to sound levels from the airguns exceeding 180 dB re 1 µPa 
(rms). However, sound levels were likely somewhat lower considering the derivation of the safety 
zone is conservative (Austin et al., 2004) and that sighting distances were recorded from the bridge of 
the Viking, which is approximately 300 m ahead of the airgun arrays. Nonetheless, some dolphins, 
especially long-finned pilot whales, approached the Viking within 300 m (and on two occasions within 
150 m of the airguns) and hence, may have been exposed to sound levels exceeding 190 dB re 
1 µPa (rms) (Austin et al., 2004). Dolphins at the average sighting distance (1073 m) during seismic 
operations would have been exposed to sound levels (via direct path) of about 169 dB re 1 µPa (rms) 
(Table 3). 

BALEEN WHALES 

Distribution, Numbers, and Seasonal Patterns 

During watches from the Viking blue, fin (Balaenoptera physalus), humpback (Megaptera 
novaeangliae) and minke (Balaenoptera acutorostrata) whales were observed (Figure 16). Baleen 
whales were sighted throughout the monitoring period (June to October) with the exception of May 
(when there was little survey effort), and were sighted at highest rates in July. All sightings of blue 

                                                   
21 This value was incorrectly reported as 1173 m in Moulton and Miller (2004). 
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whales (eight sightings, totaling 11 individuals) within the Seismic Analysis Area occurred in July and 
at highest rates in 200-500 m of water. There were four additional sightings (four individuals) of blue 
whales outside of the Seismic Analysis Area in early to mid June and mid July in water depths 
ranging from 2381-2993 m. Baleen whales were sighted at higher rates in waters less than 500 m 
deep, but were also commonly sighted in waters greater than 1000 m. 
 
Reactions to the MCP Seismic Program 

Based on available data from ship-based monitoring, there is some evidence that indicates baleen 
whales exhibited avoidance of seismic operations. Considering all water depths within the Seismic 
Analysis Area, baleen whale sighting rates were significantly lower during Array Seismic (0.025 
sightings/h; Ts = 11, n = 7 biweekly periods, P < 0.05) and All Seismic (0.031 sightings/h; Ts = 11, n = 
7 biweekly periods, P < 0.05) vs. during No Gun periods (0.035 sightings/h; Table 3). The difference 
in sighting rates during seismic vs. non-seismic periods was not as pronounced when data from water 
depths < 500 m are excluded. This is likely due to the fact that more baleen whales were sighted in 
shallower waters and that very few seismic data were acquired in shallower waters. The lower 
sighting rates recorded during seismic operations suggest that some baleen whales avoided the 
seismic operations by larger distances and thereby stayed out of visual range of the marine mammal 
monitors on the Viking. However, the radial distances at which baleen whales were initially sighted 
were, on average, similar during periods of No Guns (mean = 1303 m) vs. periods of Array Seismic 
(mean = 1311 m) and All Seismic (mean = 1324 m); there was no significant difference in sighting 
distances (P = 0.50 in both tests). There was some indication that the likelihood for a baleen whale to 
“swim away” was higher during seismic operations vs. non-seismic periods, insofar as could be 
determined by behavioural observations from the seismic vessel (Table 3). Based on available data 
from vessel-based monitoring, there is some evidence that indicates baleen whales exhibited 
localized avoidance of seismic operations. 
 
Received Sound Levels during MCP Seismic Program 

During seismic operations, one of the 12 baleen whale sightings by observers was sighted within the 
700-m safety zone (512 m). It is possible that this one baleen whale (a blue whale) within 700 m of 
the Viking bridge was exposed to sound levels from the airguns exceeding 180 dB re 1 µPa (rms). 
However, this whale, sighted from the bridge and more than 800 m from the airgun arrays (the bridge 
was located 300 m ahead of the airgun arrays), was swimming away from the bridge of the seismic 
ship. Baleen whales at the average sighting distance (1324 m) during seismic operations would have 
been exposed to sound levels (via direct path) of about 169 dB re 1 µPa (rms) (Table 3). 

TOOTHED WHALES 

Distribution, Numbers, and Seasonal Patterns 

Sightings of sperm whales (Physeter catodon) during the MCP monitoring program occurred in July, 
August and October. In total, there were at least 14 sperm whale sightings (19 individuals) observed 
from the Viking during 1598 h of ship-based observations (Figure 17). The sighting rate within the 
Seismic Analysis Area (excluding periods of poor visibility) was 0.017 sightings/h. Sperm whales were 
observed in water depths ranging from 158-3494 m. They were sighted at higher rates in waters 200-
500 m deep but were also commonly sighted in waters greater than 1000 m. There was only one 
sighting of northern bottlenose whales from the Viking. A sighting of four adult male bottlenose 
whales was made from the Viking while it was making a turn (airguns inactive) within the Gully MPA 
on 12 October 2003 in 1155 m water depth (Figure 17). 
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Table 3. Summary of marine mammal sighting distances, rates, and behaviour during non-seismic and seismic periods in the ‘Seismic 
Analysis Area’.  Sightings during periods of poor visibility and high sea states are excluded. 

Group/Species Away Towards Mill Other d Away Towards Mill Other d

DOLPHINS
Atl. Spotted Dolphin 1 0.003 300 1 0

Atl. White-sided Dolphin 0 2 0.005 428 2
Common Dolphin 7 0.022 533 2 4 1 10 0.026 861 2 4 3 1

Long-finned Pilot Whale 23 0.073 511 7 11 5 32 0.082 874 10 16 2 4
Risso's Dolphin 2 0.006 939 1 1 5 0.013 1007 2 2 1
Striped Dolphin 1 0.003 500 1 1 0.003 300 1

Unident. Dolphin 7 0.022 2271 5 1 1 17 0.043 1712 7 5 2 3

Total 41 0.131 854 14 17 2 8 67 0.171 1073 g 21 30 7 9

BALEEN WHALES
Blue Whale 1 0.003 1378 1 7 0.018 1042 2 2 1 2

Fin Whale 3 0.010 1100 3 4 0.010 1557 4
Humpback Whale 6 0.019 1510 1 3 1 1 1 0.003 2362 1

Minke Whale 1 0.003 600 1 0

Total 11 0.035 1303 1 6 2 2 12 0.031 1324 g 6 2 1 3

TOOTHED WHALES
Sperm Whale 8 0.025 750 3 2 2 1 4 0.010 1014 4

N. Bottlenose Whale 1 0.003 851 1 0

Total 9 0.029 762 3 2 2 2 4 0.010 1014 g 4 0 0 0

Sighting Rate 

(sightings/h) e

Swim Direction Swim Direction

Non-Seismic Period Seismic Period f

No. of 

Sightings a
Radial 

Dist. (m) c
No. of 

Sightings a
Radial 

Dist. (m) c
Sighting Rate 

(sightings/h) b

a "Sightings" refers to singletons and groups of marine mammals.
b Based on 313.8 h of observations.
c Average distance for species with more than one sighting.
d This category includes "Parallel", "None", and "Unknown" movement categories.
e Based on 391.2 h of observations.
f Seismic Period includes Ramp Up, Testing, and Array Seismic (i.e., "All Seismic").
g  Marine mammals at these average sighting distances would have been exposed to estimated received sound levels from the airgun array(s) of approximately 
   168-169 dB re 1 µPa (rms)  (M. Austin, JASCO, pers. comm.). 
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Figure 16. Distribution of baleen whale sightings in the ‘Seismic Analysis Area’. No baleen whales were 
sighted during periods of poor visibility or high sea states. 

 
Reactions to the MCP Seismic Program 

Based on available data from ship-based monitoring, there is some evidence that indicates toothed whales 
exhibited avoidance of seismic operations. Toothed whale sighting rates were lower during Array Seismic 
(0.006 sightings/h) and All Seismic (0.010 sightings/h) vs. during No Guns (0.029 sightings/h; Table 3) but 
the sample size was too small to conduct statistical tests. The radial distances at which toothed whales 
were initially sighted were, on average, smaller during periods of No Guns (mean = 762 m) than during 
periods of Array Seismic (mean = 1378 m) and All Seismic (mean = 1014 m; Table 3), but the difference 
was not statistically significant (No Guns vs. All Seismic: Mann-Whitney U = 11, n = 9, 4, P = 0.14; a 
statistical test was not conducted for Array Seismic given the small sample size). There was some 
indication that the likelihood for a toothed whale to “swim away” was higher during seismic operations vs. 
non-seismic periods insofar as could be determined by visual observations from the seismic vessel (Table 
3). These results suggest that some toothed whales may have exhibited localized avoidance from the 
immediate area around the seismic ship. However, results should be treated cautiously given the small 
sample size.  
 
Received Sound Levels during MCP Seismic Program 

During seismic operations, one (one individual) of the five (six individuals, all sperm whales) toothed whale 
sightings was sighted by observers within the 700-m safety zone. A sperm whale sighted within 300 m of 
the Viking was observed swimming away from the seismic ship when the airguns were ramping up and 
may or may not have been exposed to sound levels from the airguns exceeding 180 dB re 1 µPa (rms). (No 
shutdowns were required for sperm whales.) Toothed whales (i.e., sperm whales) at the average sighting 
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distance (962 m; this includes a sperm whale seen during a seismic period when sea state was 6) during 
seismic operations would have been exposed to sound levels of about 168 dB re 1 µPa (rms) (Table 3). 
Sperm whales at this average sighting distance and at 1000 m water depth would have received sound 
levels of approximately 172 dB re 1 µPa (rms) (M. Austin, JASCO, pers. comm.). 
 

 

 

Figure 17. Distribution of toothed whale sightings (including those seen during periods of high sea 
states) in the ‘Seismic Analysis Area’. Also shown is a harbour porpoise sighting which is not 
included in analyses. 

SUMMARY AND CONCLUSIONS 

The MCP marine mammal monitoring and mitigation program conducted off Nova Scotia in Scotian Slope 
waters was designed to minimize potential impacts of seismic noise on marine mammals and to document 
reactions of marine mammals to seismic operations. Monitoring from the seismic ship documented 
relatively small zones of avoidance around the operations area for baleen whales and toothed whales, and 
little evidence of avoidance by dolphins. Based on observations from the seismic ship, there were no 
indications that marine mammal listed as endangered (blue whale) or being considered for endangered 
status (Scotian Shelf population of northern bottlenose whales) were significantly impacted by the MCP 
seismic program. There was only one sighting (four individuals) of northern bottlenose whales from the 
seismic ship and this occurred when the seismic ship was completing a turn (and the airguns were inactive) 
within the Gully MPA. Northern bottlenose whales were not expected to occur in the area where seismic 
data were acquired as their primary habitat is the Gully, Haldimand and Shortland canyons. Data acquired 
during the monitoring program provided valuable information which address gaps in our knowledge about 
marine mammal distribution and abundance in Scotian Slope waters. 
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ABSTRACT 

Potter, J.R., M. Chitre, P. Seekings and C. Douglas.  2005. Marine mammal monitoring and seismic source signature 
analysis: Report on EnCana’s Stonehouse 3-D seismic survey 2003. Pages 41-56, In, K. Lee, H. Bain, and G.V. 
Hurley, Eds. 2005. Acoustic Monitoring and Marine Mammal Surveys in The Gully and Outer Scotian Shelf before and 
during Active Seismic Programs. Environmental Studies Research Funds Report No. 151, 154 p + xx.  
 
This report contains marine mammal observations statistics, high-frequency seismic source characteristics and 
example denoising of marine mammal acoustic recordings using data collected during the mitigation and monitoring 
program for a 3-D seismic survey by EnCana Corporation in the NW Atlantic during 2003. Marine mammals were 
observed both visually and acoustically. No marine mammal incidents or adverse reactions were observed during the 
survey. Acoustic observations were made by the Seamap Passive Acoustic Cetacean Monitoring System (SPACMS), 
consisting of two hydrophones placed 50 m apart, towed ahead of and to one side of the seismic source. Visual and 
acoustic detections were uncorrelated, indicating the complementary nature of the two observational techniques. Visual 
detections were more common per hour of effort than acoustic detections. Acoustic detection rates showed no 
significant day-night difference. Marine mammals appear to have avoided very close ranges (< 100 m) from the seismic 
array during seismic acquisition, but the overall number of marine mammals in the observable radius (1-2 km) did not 
change significantly when the seismic source was ‘on’ compared to ‘off’. Marine mammals were observed in larger 
groups and appeared to have become less vocal when the seismic source was active. It should be noted however, that 
the results from this data gathering effort may be affected by potential sources of bias (such as the combination of data 
from toothed and baleen whales). 
 
Signal processing of seismic source signatures indicated some high-frequency energy content consistent with 
expectations from earlier work (Goold & Fish, 1998). This analysis confirmed that most of the seismic energy was 
concentrated at lower frequencies (< 500 Hz). No low-frequency comparisons with near-field data could be made due 
to the geometry of the SPACMS recording hydrophones and seismic source, which resulted in the Lloyd’s mirror effect 
obliterating low-frequency components in the SPACMS records. 
 
A wavelet-based denoising method was applied to improve the visibility of marine mammal vocalizations on a 
spectrogram display. 

INTRODUCTION 

EnCana Corporation (EnCana) conducted a 1,734 km2 3-D seismic survey on their Stonehouse exploration 
license (EL 2414) offshore Nova Scotia in May-June of 2003. The survey was acquired by WesternGeco 
using the M/V Geco Triton. The survey area is located over the Scotian Slope on the East coast of Canada 
in water depths from 300 to 2,500 m (see Figure 18 and Figure 19). The western boundary of the survey 
area is adjacent to the Haldimand canyon, which is, at least, an occasional habitat for the Northern 
Bottlenose Whales (Hyperoodon ampullatus), an Endangered population of beaked whales. They are also 
found in the Gully Marine Protected Area, their primary habitat, and the Shortland canyon, respectively 
70 km and 47 km West from the survey area. 
 
During consultation conducted for the Stonehouse survey Environmental Assessment, specific concern 
was brought up about the potential impact of the survey on the Northern Bottlenose Whale due to its 
proximity to the Haldimand canyon and suspected enhanced susceptibility of beaked whales to acoustic 
impact (NMFS, 2001). 
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Figure 18. Stonehouse 3-D seismic survey location map. 

 
An operational plan to monitor and protect marine mammals in the survey area was drawn up for the 
Stonehouse survey, including a safety zone monitoring program for Endangered species of whales 
(Northern Bottlenose Whale, Northern Right Whale and Blue Whale) using both visual and passive acoustic 
monitoring. Representatives from EnCana and Dr. John Potter (whom EnCana engaged as a consultant for 
this purpose) discussed what would likely provide reasonable protection at realistic ranges. The approach 
was one of responsible risk management. A shutdown safety range of 800 m for all Endangered whales 
was finally chosen by EnCana. No Endangered whale was observed to enter inside this range during 
seismic production, so no shutdown was ever initiated for marine mammals. 
 
Subsequently, EnCana decided to analyze the data collected during the monitoring program and conduct 
research. Since the program was not designed for research purposes, systematic pre-survey and post-
survey marine mammal abundances were not taken. However, two Seamap Passive Acoustic Cetacean 
Monitoring System (SPACMS) survey lines were acquired within Haldimand canyon before seismic 
operations started, and no Northern Bottlenose Whales (nor any other whale species) were detected (see 
“Track 1” and “Track 2” on Figure 19). Visual and acoustic observational schedules also differed 
significantly, the Seamap system being decommissioned much earlier in the survey when the seismic 
vessel drew further away from the region of highest perceived risk to the Northern Bottlenose Whale. 
 
Marine Mammal Observer (MMO) duties were conducted primarily by EnCana’s marine mammal, bird, and 
fishery liaison observer and by the Able Bodied seamen (A.B.) with binoculars during daylight hours and 
when visibility permitted. These duties were also conducted by other bridge officers. All received training 
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from DFO before the survey. A 24-hour watch was maintained on the bridge. Each sighting was logged on 
a daily report and recorded on the form provided. Information was also passed to the SPACMS operators 
for cross-reference and inclusion into a detection summary report; any acoustic detection was visually 
confirmed whenever possible. One senior Seamap operator and two trained WesternGeco operators ran 
the SPACMS. 
 

 
 

Figure 19. Detail of survey area, showing nearby canyons. 

 
SPACMS was used to complement the standard visual observations conducted during daylight hours to 
extend the capability to detect marine mammals. The benefits of SPACMS include: 
 

1) Detects 24 hours a day, whereas visual monitoring is not effective during periods of low visibility 
(night, fog or rain) 

2) Works reasonably well even in poor weather arising from high winds, when visual observations 
become difficult 

3) Provides a complementary detection method unrelated to how long a particular species involved in 
a particular behaviour is at the surface to be seen. 

The disadvantages compared to visual observations include: 
 

1) Equipment is expensive 
2) Requires heavier equipment and longer deployment/recovery times 
3) May interfere with in-sea seismic equipment 
4) Does not detect non-vocalising marine mammals 
5) Difficult to get accurate ranges on faint contacts and, to a lesser degree, bearing. 

There were no other seismic vessels operating in the immediate area of the survey. However, slight 
seismic interference was observed on one line, possibly due to the GSI Admiral, a seismic vessel known to 
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be operating on the Scotian Shelf at the same time. Shipping activity in the survey area was negligible, and 
fishing effort was low. 

MARINE MAMMAL OBSERVATION STATISTICS 

More complete descriptions and detailed tables of observations may be found in the report of EnCana 
(2005). The traditional visual methods used are well known, so a description of these will not be repeated 
here. A description of the acoustic method is appropriate. 

SEAMAP PASSIVE ACOUSTIC CETACEAN MONITORING SYSTEM (SPACMS)  

The Seamap Passive Acoustic Cetacean Monitoring System (SPACMS; see Figure 20) consists of 2 
hydrophones of –201 dBV sensitivity re 1 µPa separated by 50 m and sampled at a rate of 44 kHz. The 
hydrophones are spectrally flat to within 1.5 dB over 1 Hz – 15 kHz. A fixed gain preamplifier in the 
streamer provides 27 dB of gain. 
 
The dual channel 56 m streamer was deployed ahead and slightly to the port side of the seismic array 
(which was towed ~485 m behind the vessel) to ensure that it did not interfere with the recovery and 
deployment of the in-sea seismic equipment. A more complete description of this system and its 
deployment can be found in (EnCana, 2005). 
 
The acoustic signals received by the streamer are fed to the interface unit; then to the computer for 
processing, recording and display. The displays show the operators the clicks detected, ultra-low frequency 
signals and wide band spectrogram information on spectrogram plots. Streamer depth and position are 
also displayed. 
 
The signals from the hydrophones are processed to obtain a bearing to the operator-selected acoustic 
source using the measured time of arrival delay from one hydrophone to the other and a simple direct ray 
assumption. Using GPS positioning information and a proprietary mapping application, an approximate 
range for the acoustic source can be estimated based on recording of suitable series of bearings. 
 
Unfortunately, towing the entire seismic spread and using azimuth thrusters produced high levels of 
mechanical and cavitation noise. This was not observed during the test deployment in the Gulf of Mexico, 
where the full streamer and position control systems were not deployed. This broadband noise reduced the 
maximum detection ranges for vocalizations from the theoretical detection range of several km (depending 
on species) to approximately 1-2 km; however, this was still adequate for mitigation purposes. 
 
Acoustic monitoring for whales over the frequency range 0-22 kHz was conducted continuously whenever 
the equipment was deployed. Operators monitored for whales prior to and during the ramp up period and 
while the vessel was in production. 
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Figure 20. Vessel layback diagram, showing deployment position of the Seamap Passive Acoustic 
Cetacean Monitoring System (SPACMS). 

GEOGRAPHICAL DISTRIBUTION 

A chart of marine mammal sightings is shown in Figure 21. Marine mammal sightings are represented by 
different symbols. If no specific bearing or distance was available for the marine mammal sighting, the 
vessel position is indicated instead of the marine mammal position. Visual sightings are prefixed with the 
letter ‘V’ whereas Seamap acoustic sightings are prefixed with the letter ‘S’. A total of 8 visual sightings are 
not plotted, being south of the chart coverage. 
 
Most of the sightings were along the northern edge of the survey area, while the vessel was turning at the 
end of a seismic line and aligning itself for the next. This suggests that marine mammals are more attracted 
to the vessel while the seismic source is turned ‘off’ (for approximately 3 hours per turn). It could also be 
that marine mammals congregate in shallower waters of the Scotian slope (< 500 m deep or so). The 
Scotian Shelf edge is indeed a whale migration route, especially in the spring and early summer as whales 
come back from their south winter grounds, with later entry onto the Shelf. 
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STATISTICAL ANALYSIS OF MARINE MAMMAL SIGHTINGS 

Acquisition of the Stonehouse survey started on the western side of the survey area, near the Haldimand 
canyon, and moved eastwards. SPACMS was operated continuously during seismic acquisition from May 3 
to May 24 (22 days), until the seismic vessel was sufficiently far away from the canyon. Visual observations 
continued until the end of the program on June 28. Much of the daytime weather during this period was 
foggy, with significant wave heights varying from less than 1 m to > 5 m. 
 
There are several differences in the type of information gathered from the visual and SPACMS observation 
systems. Visual detections can estimate the number of animals, the SPACMS cannot. To level the playing 
field, we have therefore used the number of ‘detection events’ rather than number of animals when 
comparing data obtained from the two methods. We have also normalized detection rates by hours of 
observation effort, to level the playing field between SPACMS (which can operate 24 hours a day) and 
visual observations (which can operate only 14 hours or less per day, depending on weather). Faint 
acoustic detections were disregarded, as being of no operational concern, so have not been included in the 
analysis. While these limitations might not be considered ideal from a scientific standpoint, we should 
remember that the whale monitoring program was initially designed for operational mitigation purposes. 
 
We begin by looking at the number of detection events, split into visual and acoustic detections and not 
normalized by hours of effort. Ideally, we would have liked to take the visual observations only for the 
period where the SPACMS was operating, for a direct comparison, but the period (3-24 May) was too short 
to obtain statistically significant number of visual events, and so visual detection events have been 
considered from the entire survey. This introduces some geographical/temporal confounding variables, as 
we shall see. Table 4 shows the number of detection events for the two methods. 
 
The largest discrepancy in detection rates is for Humpback Whales, but a closer look at the data reveals 
that all Humpback detections were made during the latter part of the survey, when the SPACMS was not 
operating. This is therefore likely a temporal bias. 
 
Of the 17 SPACMS detection events, 11 were in daylight, in line with the proportion of daylight hours at this 
latitude in May. Hence, acoustic detection rates are similar for day and night. This supports the assumption 
that we may compare detection rates per hour between visual and acoustic techniques, irrespective of the 
concern that the acoustic monitoring operates during daytime and night time whereas visual monitoring is 
limited to daytime. 
 
There were no acoustic detections of Mysticetes, although we know from previous programs that SPAMCS 
can detect baleen whale species. The absence of Humpback Whale detections has been explained. For 
Minke and Fin Whales, it may be that these species were not vocalising, or that the low frequencies emitted 
by Mysticetes are more easily lost in the background vessel noise, whereas transient, high-frequency 
echolocation clicks from toothed whales are quite distinct and more easily detected. This is borne out by 
the relatively high detection rate (compared to visual detections) for Sperm Whales, Northern Bottlenose 
Whales and Dolphins compared to other species. 
 
The detection of Northern Bottlenose Whales was of particular importance. There were 5 such detection 
events, 3 visual and 2 acoustic. Acoustic detections of Bottlenose whales were identified by SPACMS 
operators based on the observed vocalization pattern. All events occurred during weather standby or line 
turns, while the seismic source was not active. The closest detection was at 30 m during weather standby. 
Other detections were at ranges of 500-1800 m.  
 
Noting that not one detection event of any species was recorded both visually and acoustically, and that 2 
out of 5 of the Northern Bottlenose Whale detection events were acoustic and unobserved visually 
indicates the power and complementarity of the acoustic monitoring technique. Some contributing factors to 
the lack of correlation between visual and acoustic detections are periods of low visibility when visual 
detections are limited (fog, night), and diving/vocalising behaviour of the whales (e.g. some whales species 
tend to be silent when they are at the surface, and to vocalise when they are involved in underwater 
activities such as chasing squids). 
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Figure 21. Chart of marine mammal detections during the Stonehouse survey. 
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 BW D HP PW SW MW HW FW UI Total 

Acoustic 2 11 0 0 3 0   0 0 1 17 
Visual 3 14 2 7 2 7 25 3 1 64 
Total 5 25 2 7 5 7 25 3 1 81 

 

Table 4. Detection events during the survey for the visual and acoustic observations. 

BW=Northern Bottlenose Whale; D=Dolphin; HP=Harbour Porpoise; PW=Long Fin Pilot 
Whale; SW=Sperm Whale; MW = Minke Whale; HW=Humpback Whale; FW = Fin Whale; 
UI=Unidentified. 

MARINE MAMMAL RESPONSE TO SEISMIC ACTIVITY 

At no time was any individual observed to be affected by seismic activity. However, statistical analysis of 
marine mammal detections can draw out more subtle effects such as minor avoidance, as described below. 
 
Statistics were computed taking time bins of 6 minutes (0.1 hour). However, for reporting purposes, values 
are stated in detections per hour. Standard T-tests were used to assess statistical significance. 
 
Ideally, statistics for toothed whales and baleen whales should have been analyzed separately because of 
differences in hearing range, but the small number of samples did not allow for this, potentially introducing 
bias. Other potential sources for bias include location/water depth differences, different observers and 
differences in detection ranges. As expected for a program not initially planned for research, the 
experimental design is not well blocked (in terms of optimally sampling the parameter space to unravel 
confounding variables) and some of these sources of errors are likely to cause some bias. 

Visual Detection versus Seismic Activity 

The number of detection events/hour with seismic source OFF versus ON gives a factor of 2.5:1 (# visual 
detection events per hour of observation with source OFF = 0.089, source ON = 0.035). This is statistically 
significant at the 99.7% level.This ratio approaches unity (1.16:1) if we use animal counts (0.52 for source 
OFF to 0.45 for source ON). This is statistically significant only at the 64% level, little better than chance. 
Hence, fewer groups consisting of more marine mammals on average were observed when the seismic 
source was active, but marine mammals did not as a whole move out of visual range or become less 
visible. 

Acoustic Detection versus Seismic Activity 

Acoustic detection events/hour versus seismic activity has a ratio of 3.3:1 (0.0574 for source OFF to 0.0175 
for source ON). This is a statistically significant difference at the 98.6% level. Coupled with the visual 
results computed in the previous section, this implies that the whales tend to become less vocal but do not 
go away when the seismic source is active. This could have implications for possible bias inherent in using 
visual observations to interpreting impact on marine mammals. Seismic surveying can apparently have a 
behavioural impact at a high level of statistical significance without visual observers reporting seeing fewer 
marine mammals. 

Marine Mammal Proximity versus Seismic Activity 

The SPACMS was not able to estimate ranges sufficiently often to obtain statistically significant results, 
owing to the difficulty in maintaining contact over a long enough period for a long baseline bearing change. 
 
The average detection range from visual observations does not show a significant difference between 
seismic source OFF and ON. However, the percentage of detection events within 100 m does (35% for 
source OFF versus 14% for source ON), suggesting that marine mammals do avoid very close ranges 
when the seismic source is ON compared to OFF, even if they do not move far enough to exceed visual 
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detection range. Safety zone monitoring for Endangered whales did not affect those statistics since no 
shutdown was required during the survey. 

SEISMIC SOURCE SIGNAL ANALYSIS 

Acoustic recordings of the seismic source elements were made at low sampling rates (500 and 2000 Hz) 
by near-field receivers (approximately 1 m from the source elements) and at high sampling rate (44 kHz) by 
the two SPACMS receivers. The near-field receiver recordings were low-pass filtered at 500 Hz. The far-
field SPACMS receivers were at some 35 m depth and 147-224 m range, so that the difference between 
the direct and surface-reflected arrivals was very short, cancelling out frequency components below about 
250 Hz. Hence, there is little overlap between the two recording system signal estimates that would allow 
comparison. 
 
Signatures from the seismic source elements at higher frequencies have been estimated by deconvolving 
the anticipated double arrival (direct and surface-reflected). 
 
The seismic source used consisted of two identical 5085 in3 source arrays laterally separated by 75 m, 
operated in a flip-flop mode. Each array consisted of three 1695 in3 sub-arrays operating at 2000 psi air 
pressure (Figure 22). 
 
Figure 23 shows example traces from the near-field hydrophones, on an arbitrary pressure scale. It is clear 
that (apart from an apparent inversion of the signal) the near-field signal from a single source element 
consists of a single rapid pulse rise and subsequent rapid fall, followed by periodic bubble plume pulses at 
a little over 1 second intervals. Once the surface reflections and array tuning are taken into account, most 
of the energy is concentrated around 100 Hz. The smaller sharp inverted peaks visible shortly after the 
primary pulse are presumed due to surface-reflected signals, much attenuated due to the additional 
distance traveled by the reflected path compared to the nearness of the near-field hydrophone directly 
above the source element port. From the ratio of the amplitudes and the delay interval between primary 
and reflected path, the near-field hydrophone is estimated to be approximately 1.25 +/-0.25 m from the 
source element port, consistent with its actual location on the source array (1 m for a single source element 
position and 1.25 m to the centroid of a cluster). 

Seamap SPACMS RECORDINGS 

The Seamap receivers were at a nominal depth of 35 m with ranges to the various seismic source 
elements varying between 147-224 m for the two hydrophones (144-222 m for horizontally projected 
distances). Both source arrays were at a depth of 6 m. 
 
For a sound source near a perfectly compliant boundary, like the boundary between water and air at the 
sea surface, the boundary can be replaced by an image source with opposite sign (ð radians out of phase) 
placed equidistant on the far side of the boundary. This ‘image source’ causes a well-known pattern of 
destructive and constructive coherent interference with the direct source signal, depending on ranges, 
depths and frequency. This effect is called Lloyd’s mirror. An example of a typical Lloyd’s mirror geometry 
is given in Figure 24. 
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Figure 22. Layout of the seismic guns, forming two arrays. 
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Figure 23. Example traces (with arbitrary vertical pressure scale) from near-field recordings. 

 
The resulting pressure field exhibits the usual sinusoidal oscillations in space and time and a 1/R decay 
dependence due to spherical spreading. There is also another sinusoidal term, however, which modulates 
the rms pressure amplitude of each frequency component and, at large range, tends to zero. For our case, 
h ~ 35 m and d ~ 6 m, while R ~ 144-222 m. At 250 Hz, the Lloyd’s mirror effect allows coherent 
constructive interference at 144 m range, while reducing the amplitude by 45% from 144 m to 222 m range. 
At lower frequencies, the signal is progressively reduced at both Seamap receivers. At 100 Hz, the most 
distant Seamap hydrophone receives an amplitude reduced by 8 dB. 
 
Therefore, to estimate the original seismic source signal from the Seamap recordings is not so simple, 
essentially because the direct and reflected paths are of very similar lengths and the angle of incidence on 
the surface is extremely shallow, permitting an almost specular return of similar amplitude to the direct 
path. The method that has been chosen in this analysis is deconvolution (i.e. estimating the source 
signatures based on multiple reflections received at the hydrophones). However, it is recognized that for 
frequencies below 200 Hz the signal will be irretrievably distorted by the Lloyd’s mirror effect. 

The deconvolution method applied assumed that the transmitted signal, x(t) would be received by both 
Seamap hydrophones, together with inverted replicas at some unknown time lag (different for each 
receiver) due to the surface reflections. By minimizing the energy in the estimated x(t) over all possible time 
lags, for both receivers simultaneously, we obtain a robust estimate ˜ x  of x. There remains some potential 
for instability, exhibited as a regular oscillation in the estimate ˜ x . Assuming that the original signal is 
spectrally smooth, we further impose an additional constraint of spectral smoothness on ˜ x  to obtain the 
final estimate. A comparison between the low-frequency energy density recorded with a near-field 
hydrophone by EnCana and the energy density estimated by this deconvolution of the Seamap recording 
shows that the deconvolution estimate falls progressively below the near-field result for low frequencies, 
with a shortfall of some 10 dB at 100 Hz, broadly in line with estimates from the Lloyd’s mirror effect. 
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Figure 24. The geometry for Lloyd’s mirror. The range R is normally >> h or d. 

 

DECONVOLVED HIGH-FREQUENCY RESULTS 

Given that the deconvolved results from the SPACMS cannot give reliable time series or spectral estimates 
below 200 Hz, we present only the high-frequency spectral power for seismic source elements of various 
sizes in Figure 25. 
 
The curves are averages over all source elements of each size for which recordings are available. The 
general trend is clearly for all sizes to exhibit decreasing power as frequency increases, with levels at 5 kHz 
some 65 dB below those at 50 Hz. As expected, larger source elements produce generally higher energy 
levels at all frequencies. There is no indication of marked frequency structure in any of the sizes, or any 
significant difference in spectral shapes, indicating that these source elements all operate in much the 
same way, simply with larger or smaller gas releases as the size suggests. Examination of different 
signatures from each source element shows that the source elements are very stable in their output. 
 
When a source element signature is combined with its reflection in the surface, the spectral density could 
be as much as 6 dB higher (for coherent constructive interference) or reduce to zero. A simulation of the 
effect of elevation of a receiver at 100 m has been carried out to indicate how receive levels might be 
affected by the depth of a receiver at constant range. The results have been corrected for spherical 
spreading to give the apparent source level at 1 m. The results for source element 2-3 (element #3 from 
sub-array 2) are shown in Figure 26. 
 
As can be seen, the energy density at steep angles (high declination from the horizontal) at low frequencies 
is some 3 dB higher than for the signature shown in Figure 25 for this source element. At frequencies 
below 4 kHz there is a significant reduction in received level if the receiver is nearly horizontal, with little or 
no effect below a declination of 30 degrees. At higher frequencies, there is no apparent declination effect. 
Whereas it is often assumed that the array will always steer the seismic energy downwards (which is 
certainly true at low frequencies) we can see here that this is not as obvious at higher frequencies, where 
many Odontocetes hear best (though the amplitude of these higher-frequency signals is attenuated very 
rapidly to ambient noise levels). 
 
Finally, the effect of an entire array was simulated, with surface reflections. The power spectral densities 
above 150 Hz were estimated at declinations of 0, 30, 60 and 90 degrees, 90 degrees being directly 
downward from the surface. The array is not rotationally symmetric and hence exhibits azimuthal variation. 
For a declination of 90 degrees (pointing straight down), there is no azimuthal variation. For other angles of 
declination (0, 30 and 60 degrees), spectra were computed in five azimuthal directions, 0, 45, 90, 135 and 
180 degrees, where 0 degree is ahead and 90 degrees is broadside of the array. The results are shown in 
Figure 27. 
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Figure 25. High frequency power spectral density for seismic source elements of various sizes. 

 

 
Figure 26. Simulated directionality for airgun 2-3 as function of declination from the horizontal. 
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Figure 27. Predicted declination and azimuthal variations in power spectral density of a seismic array 

above 150 Hz. 

 
Figure 27 shows that the declination is predicted to have a very substantial impact on the output of the 
array at lower frequencies, 30-40 dB at < 500 Hz from directly downwards to horizontally. These 
differences diminish as the frequency increases. 
 
It is also clear that there are substantial variations with azimuthal angle, arising from the detailed coherent 
interference of many sources as the geometry changes. These can apparently introduce a variability of +/-
 10 dB. These predictions suggest that, based solely on amplitude, marine mammals may not be able to 
know whether they are swimming towards or away from a seismic array, because geometrical variations 
may give rise to +/- 10 dB in receive level purely as a result of changing azimuthal angle to the array 
without changing range. 

MARINE MAMMAL VOCALIZATION DENOISING 

The marine mammal vocalization recordings consist of various types, recorded on the two hydrophones of 
the SPACMS. There were 17 detections during the 26 days that the SPACMS was deployed. Of the 
11 detections made during daylight, 8 were observed as dolphin whistles and 3 as Sperm Whales. One of 
the detections was twenty minutes after the last visual observation of Sperm Whales. The other two visually 
unconfirmed click trains were consistent with click trains attributable to Sperm Whales. 
 
Of the 6 detections at night, 3 were acoustic indications of dolphin whistles and 2 were acoustic indications 
of Northern Bottlenose Whales with observed trains of location clicks. The other detection was of several 
click trains spaced well apart and too weak to identify. 
 
There were other fleeting and faint detections but these were deemed to be at distances of no operational 
concern, and were not classified as detections. No Mysticetes were detected acoustically. The recordings 
have significant transient noise caused by the survey boats thrusters, and some unwanted tonal content. 
 
The data were denoised by a two-stage wavelet decomposition process, using the Acoustic Signal 
Characterisation Toolbox (ASC), developed by the Acoustic Research Laboratory (ARL) in the Tropical 
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Marine Science Institute (TMSI) at the National University of Singapore (NUS) following the method of 
Delory & Potter (1998). 

EXAMPLE DENOISING RESULTS 

The examples shown in Figure 28 and Figure 29 are dolphin whistles recorded on May 8, 2003, with the 
original and denoised spectrograms shown in Figure 28 and Figure 29, respectively. The recording was 
made shortly before dawn when the seismic source was OFF in a water depth of 550 m at a range of 
300 m. 
 
Figure 28 shows strong noise tonals and broadband low-frequency noise that are largely removed in the 
denoised spectrogram of Figure 29. As a result, the frequency-modulated whistle in the centre of the 
frequency range is much clearer in the denoised spectrogram. Other examples show a similar 
enhancement of the visual continuity and strength of time and frequency-modulated vocalizations (e.g. 
whistle) after transients, tonals and broadband low-frequency noise have been suppressed. For this study, 
the denoising technique was applied after the seismic program, but it could be used in real time to improve 
marine mammal vocalization signal contrast in spectrograms viewed by operators. 
 
While it would have been desirable to obtain good recordings of the Northern Bottlenose Whale, only weak 
records of their clicks are available. These were sufficient to identify the species, but not of sufficient quality 
to warrant further study. 
 

 
 

Figure 28. Original spectrogram. 

 

 

 
 

Figure 29. Denoised spectrogram. 
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CONCLUSIONS 

Marine mammal observation data collected during the Stonehouse survey by EnCana shows no evidence 
of significant individual impact on marine mammals, including Northern Bottlenose Whales. The data 
analysis indicates statistically-significant responses of marine mammal to seismic activity (i.e. to stay 
outside a close approach circle, to be observed in larger groups, to reduce vocalizations but not to move 
out of detection range). It should be noted however, that the results from this data gathering effort may be 
affected by potential sources of bias (such as the combination of data from toothed and baleen whales). 
 
In addition, the Seamap Passive Acoustic Cetacean Monitoring System (SPACMS) has proved itself a 
valuable marine mammal observation tool that can usefully complement visual observations. SPACMS 
produced detections that were uncorrelated with visual observations, hence providing new information 
unavailable to visual observers. The data from SPACMS has also been used to infer high-frequency 
behaviour of the seismic source elements and likely far-field effects, including estimated received levels at 
various angles in azimuth and elevation from the seismic arrays. This analysis confirmed that most of the 
seismic energy was concentrated at lower frequencies (< 500 Hz). 
 
Finally, we have presented example spectrograms of a marine mammal recording and suggested a 
denoising toolbox that could be used to improve detection of marine mammal vocalizations. 
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ABSTRACT 

McQuinn, I.H. and D. Carrier. 2005. Far-field measurements of seismic airgun array pulses in the Nova Scotia Gully 
Marine Protected Area. Pages 57-74, In, K. Lee, H. Bain, and G.V. Hurley, Eds. 2005. Acoustic Monitoring and Marine 
Mammal Surveys in The Gully and Outer Scotian Shelf before and during Active Seismic Programs. Environmental 
Studies Research Funds Report No. 151, 154 p + xx.  
 
Plans for conducting 3D seismic exploration adjacent to the Sable Island Gully Marine Protected Area (MPA) prompted 
concerns over the potential for stress and physiological harm to the endangered Northern Bottlenose Whale from the 
increased noise levels. A study of the far-field measurement of seismic pulses throughout the Gully MPA was therefore 
initiated to validate the accuracy of sound propagation predictions from the environmental assessment (EA). The 
highest average sound pressure level (RMS) measured in the Gully MPA during the present study was 145 dB re 1 
µPa at 90 m depth, 50 km from the seismic array. This sound level was measured within the Gully Whale Sanctuary 
while the seismic vessel was surveying the western portion of the exploration block. It was estimated that sound levels 
in the Whale Sanctuary would have been between approximately 153 and 157 dB when the vessel was at its closest 
approach to the Gully in the eastern portion of the survey block. The “worst case” sound level at the Gully MPA 
boundary, i.e. 0.8 km from the source, extrapolated from near-field measurements in Austin and Carr (2004) would 
have been approximately 178 dB, 14 dB higher than originally predicted in the EA. Measured sound levels were also 
significantly higher than the model predictions at several other stations and showed significant variability around the 
mean values. This demonstrates the importance of using accurate model input data, of using field validation to verify 
the model predictions and of the need to measure the variability around the mean sound level estimates. Transmission 
losses should be re-modelled if actual survey conditions differ from assumptions made in theEA. 

INTRODUCTION 

Interest in seismic oil and gas exploration on the Scotian Shelf off Nova Scotia has been increasing in 
recent years, with the submission of proposals for seismic surveys in previously unexplored deep-water 
areas, and new licenses being issued. However, the recent designation of the Sable Island Gully as a 
Marine Protected Area (MPA) has prompted calls for increased vigilance on the part of regulatory bodies 
when issuing licences near this sensitive area. The Gully MPA is an ecologically significant habitat for 
many marine mammals and includes a Whale Sanctuary (Figure 30) principally for the northern bottlenose 
whale, Hyperoodon ampullatus, listed as an endangered species under COSEWIC. Concerns have been 
raised over the potential impacts of loud noise sources such as seismic airgun arrays on the physiology 
and behaviour of marine mammals and in particular on special status species such as the northern 
bottlenose whale, having its main distribution in and around the Gully MPA (Whitehead et al., 1997) and the 
adjacent Shortland and Haldimand marine canyons of the outer Scotian Shelf and Scotian Slope. There 
was therefore considerable concern over the increased noise levels produced within the Gully MPA from 
3D seismic shooting in adjacent exploration blocks leased by Marathon Canada Ltd and EnCana 
Corporation, and the potential for stress and physiological harm to the northern bottlenose whale. 
 
Worldwide, regulatory bodies are relying on mitigation measures to lessen the impacts of seismic 
exploration on marine life, with particular attention to marine mammals. One of the principle mitigation 
measures used during seismic surveys is the definition of one or more safety zones around the array which 
define areas of potential physiological and behavioural impact upon marine mammals. Typically, operators 
may be required to cease shooting if a marine mammal is sighted within a safety zone defined as an radius 
around the seismic array within which the received sound pressure level (SPL) is predicted to be above a 
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given criteria. In the case of the Marathon Canada Ltd. project, estimated sound levels were calculated for 
the environmental assessment from a sound propagation model for various trajectories from sources within 
the Marathon licence block to receive points in the near-field (i.e. within hundreds of meters of the vessel) 
and in the far-field including the Gully MPA (Moulton et al., 2003). The safety radius for cetaceans was 
determined from these models to be 500 m for a received level of 180 dB re 1 µPa (RMS). 
 
The Gully Seismic Research Program was initiated by Fisheries and Oceans Canada in partnership with 
industry to study the propagation of seismic pulses into the Gully MPA from the Marathon 3D seismic 
survey. The present study focused on measuring seismic airgun array sound levels in the far-field 
throughout the Gully MPA and on validating the accuracy of far-field sound propagation model predictions 
from the environmental assessment (Moulton et al., 2003). 
 

 

Figure 30. Location of the Marathon exploration block relative to known Northern Bottlenose Whale 
habitat in the Gully MPA and the Shortland and Haldimand canyons. 

MATERIAL AND METHODS 

Our study was initially planned to measure far-field (> 30 km) ambient noise before seismic shooting and 
sound levels when the seismic array was shooting closest to the Gully MPA. However, due to significant 
delays, the 90-day Marathon seismic reflection survey began several months later than scheduled. 
Therefore the two studies were rescheduled, one before the seismic survey (April, 2003) to measure 
ambient noise and to record marine mammal vocalisations, and the other during seismic shooting (July, 
2003) to measure the far-field seismic noise levels, ambient noise and again to record marine mammal 
vocalisations. However, at this time, the seismic vessel M/V Ramform Viking was at the western extremity 
of the Marathon block, some 30 km from the Gully MPA at its closest approach. 
 
The CRV Strait Signet was chartered as a platform for conducting the noise recordings and for the marine 
mammal observations. A surface deployed calibrated hydrophone recording system called RUSTLER 
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(Hydroacoustic Laboratory, MLI, DFO, Mont-Joli) was used for sound data collection. This system was 
powered from two 12-volt batteries and consisted of an omni-directional (± 1 dB) ITC6050 recording 
hydrophone (midband receive sensitivity: -157 dB V/µPa), a Reson TC4033 reference hydrophone, a 
Reson TP1000 fixed gain/ highpass filter (1 Hz) and a Marantz PMD670 microdrive recorder. The recording 
and reference hydrophones were calibrated at the Hydroacoustic Laboratory, MLI referenced to a 
pistophone-calibrated B&K 8105 hydrophone. The TC4033 reference hydrophone produced a 2-sec, 10 
kHz tone at 2.5-min intervals that was used to validate the system calibration coefficients after deployment. 
This avoids having to recalibrate the system when a component is replaced, provides a means to ensure 
that the receive hydrophone is stable over time, ensures that the system amplitude corresponds to the 
recorded gain settings and can be used to diagnose trouble with the system or to provide warning of 
problems as they develop (e.g. leaks in the cable). 
 
The frequency response of all components was measured in the laboratory and was used to normalise the 
sound recordings. Recordings were stored in standard PCM wav format with a bandwidth of 24,000 Hz, i.e. 
at a sampling rate of 48,000 samples/sec. GPS position data was collected on both vessels and referenced 
to the GPS time for the estimation of transmission ranges. 
 
The survey design was a systematic grid of fixed stations covering the canyon section of the Gully MPA as 
well as the adjacent shelf and slopes to the southwest and northeast (Figure 31). During the April survey, 
RUSTLER was deployed at each station at 10, 30, 50, 70 and 90 m depth for 10-min each, depth 
permitting. Deployment depth was assumed from the hydrophone cable length without correction for cable 
angle, so any deviation from the vertical due to currents would have reduced this depth. 
 

 
Figure 31. Sampling design for the April survey in the Gully MPA (box) showing planned and sampled 

recording stations. 

 
Having RUSTLER installed on a ship allowed sampling coverage to be spread over a wide area, the 
monitoring of data quality and the optimal configuration of gain settings, e.g. high signal to noise ratio 
(SNR) while avoiding signal clipping. However, despite having the ship’s engines and generators shut 
down during recording, a surface deployment has the disadvantage of increasing platform related noise 
(PRN). In rough weather, considerable noise can be produced from the rolling of the vessel (e.g. metal-on-
metal thumping noises). In April, the weather was particularly poor, and the effects on data quality were 
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significant, particularly at the shallower depth deployments. Therefore, for the July study, an effort was 
made to reduce strain on the cable and PRN. A motion compensation device was installed on the cable, 
which consisted of a float and rubber shock cords that helped considerably to dampen the wave-generated 
vertical movement of the hydrophone and to improve data quality. In addition, half-hour recordings were 
conducted at each station (Figure 32) at 90 m only during the second study, again depth permitting. When 
no seismic pulses were recorded, stations were resampled at a later date (see Table 5). 
 

 

Figure 32. Recording stations and seismic vessel track for the July survey in the Gully MPA (light box), 
showing the Marathon block (dark box). 

 

OCEANOGRAPHIC DATA 

Temperature, salinity and density profiles were collected at each station with a Seabird CTD profiler to 
determine sound velocity profiles throughout the Gully MPA. CTD profiles were made to 550 m or to just 
above bottom when shallower than 550 m. 

DATA ANALYSES 

Sound Level: Waveform Analyses 

Peak sound pressure level (peak = maximum 0-to-peak pressure level per pulse), the RMS sound pressure 
level (SPLrms = root mean square sound pressure level over the pulse time window) and sound exposure 
level (SEL = energy flux density over the pulse time window standardized to 1 sec) were estimated using a 
Matlab application developed at the Hydroacoustic Laboratory, MLI according to the methods described by 
Austin and Carr (2004). The Calibrated Ambient Noise and Sound Analysis (CANASA) software was 
designed to calculate absolute receive levels from the referenced sound recordings. In analysis, the 
reference tone was detected and the SPL amplitudes were scaled to the theoretical receive level of the 
tone. 
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Sound recordings were analysed from each station where seismic pulses were detected, except when the 
airgun array was ramping up. The seismic array was assumed to be ramping up when seismic pulses were 
recorded but the source platform’s position was determined to be outside the Marathon block. 
 
Data files were first filtered between 10 and 1000 Hz, as all significant seismic pulse energy can be found 
within this band, with the vast majority below 500 Hz (Moulton et al., 2003). The files were then scanned 
with an automatic pulse detector which determined the time window for each pulse for the estimation of the 
SPLrms, where the cumulative energy flux density was between 5 and 95% of the total pulse (Austin and 
Carr, 2004). The 100% pulse time window was defined as the time at which the RMS sound pressure per 
consecutive 100-sample segment was below 0.1% of the cumulative energy from the beginning of the 
pulse (Figure 33). All detected pulses were scrutinized with a graphic editor within CANASA to determine if 
the pulse time window was well defined. The few pulses that were poorly defined due to excessive 
background noise from the recording platform were eliminated. Mean values for peak pressure levels, 
SPLrms and SEL were estimated for each station by averaging (linear scale) over all remaining pulses (20 < 
n < 166 per station). Finally, selected stations were scrutinised to compare measured SPL results with 
model predictions from Moulton et al. (2003). 
 

95%

5%

 

Figure 33. Determination of the pulse time window from the estimation of the cumulative energy of a 
seismic pulse waveform. 

Sound Level: Spectral Analyses 

Fast Fourier Transforms (FFT) were used to examine the frequency content of the seismic pulses at 
various distances from the source. Sound levels (dB re 1 µPa) were measured at 1/6 octave bands 
(toothed whale critical band) starting at 10 Hz (central frequency) to produced 3D noise spectrograms. 
These sound spectra were compared to a toothed whale’s audiogram to determine audibility. Although the 
Northern Bottlenose Whale was the species of most concern, the only large odontocete audiogram 
available to us was from the Beluga Whale, Delphinapterus leucas (Erbe and Farmer, 2000). We assume 
that the Beluga Whale audiogram would represent the upper limit of the hearing sensitivity of the Northern 
Bottlenose Whale given that in general, larger marine mammals exhibit higher sensitivity at lower 
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frequencies. Therefore, comparison of the seismic sound levels with the Beluga Whale audiogram should 
be a conservative approximation to what a Northern Bottlenose Whale should be able to hear at low 
frequencies (< 500 Hz). 

Ambient Noise 

For the ambient noise analyses, power spectral density (PSD) levels (dB re 1 µPa2/Hz) were estimated 
using FFT analysis over the recorded bandwidth, and presented in 1/3 octave bands for comparison with 
published measurements. Files were first scrutinized with a sound file editor (CoolEdit, Syntrillium ®) to 
identify, select and eliminate platform related noise. Noise was considered PRN either audibly or if it 
appeared to be related to wave movements, such as metallic thumping. This was particularly obvious for 
the shallower stations. 

RESULTS 

SURVEY COVERAGE AND SYSTEM PERFORMANCE 

Rough weather prevented sampling at 12 of 24 planned stations during the April survey. Also, significant 
PRN was noted on most recordings, making the estimation of ambient noise levels difficult for those 
stations. Therefore only the cleanest data were analysed. From the July survey, all stations were visited at 
least once and seismic pulses were recorded at all but station D3, as the airguns were off during both 
visits. 

PULSE CHARACTERISTICS 

The highest average peak, SPLrms and SEL amplitudes per station were 161 (station F1), 145 (station E2, 
E3) and 144 (station F1) dB re 1 µPa, respectively, during the period of our field measurements (Table 5). 
Pulse amplitude variability over the 0.5 hr recordings was considerable both within and among stations, 
partially due to variable range and propagation conditions from the displacement of the source vessel, but 
also due to differences between the alternating arrays. The mean SPLrms inter-pulse difference varied from 
1 to 6 dB from station to station (Table 5). Variability of this magnitude was also seen in data presented in 
Austin and Carr (2004). Often a strong pulse was followed by a weaker pulse (Figure 34), suggesting a 
regular difference between the dual arrays, and possibly related to different shot depths. 
 
SEL and SPLrms were on average quite similar in amplitude and about 15 dB less than peak levels (Table 
5). The SPLrms estimates were more variable than peak and SEL (Figure 35). The increased variability in 
the SPLrms shows the importance of the determination of the pulse time window. In general, with a 
decrease in multi-path echoes, e.g. fewer bottom and surface reflected echoes, the pulses were sharper 
and the demarcation with the ambient noise was clearer. In these cases, the beginning and end of the 
pulses were easier to detect, the pulse time windows were generally shorter (< 1 sec) and the SPLrms was 
significantly higher than the SEL (Table 5). However, because the SEL is the cumulative energy, the metric 
was less affected by variations in pulse windows detection, since the tail ends of the pulses contained 
relatively little energy, resulting in higher measurement stability. 
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Station
Recording 

Date Latitude N Longitude W
Distance 
to Source

Hydrophone 
deployment 

Depth
Bottom 
Depth

Sound 
Speed

No. of 
Seismic 
Pulses Peak SPLrms SEL

Pulse 
Time 

Window

(yyyy-mm-dd) (deg.dec) (deg.dec) (km) (m) (m) (ms-1) (dB) (dB) (sec)

A1 2003-07-05 44.0967 59.2807 64.5 50 60 1463.3 47 138.2 121.3 122.6 3.9 10.4 2.6
A2 2003-07-14 44.1656 59.1917 96.1 90 230 1456.4 28 134.0 117.9 123.0 6.6 11.7 6.3
A3 2003-07-05 44.1884 59.0216 71.2 90 190 1454.9 27 131.0 117.0 126.1 3.3 9.8 7.2
A4 2003-07-05 44.2244 58.8934 90.9 45 56 1458.3 103 144.5 134.3 134.6 3.9 12.1 1.4
B1 2003-07-06 44.0057 59.2232 51.7 35 43 1463.0 150 144.1 137.6 135.4 3.2 8.4 0.6
B2 2003-07-06 44.0454 59.0843 50.9 90 300 1447.3 4 139.1 123.3 128.5 2.4 3.1 3.6
B3 2003-07-14 44.0896 58.9681 67.2 90 230 1453.6 20 142.6 131.2 129.7 3.3 8.0 0.8
B4 2003-07-05 44.1368 58.8318 101.3 75 90 1455.6 91 147.3 134.4 133.8 3.7 12.2 1.8
C1 2003-07-06 43.9176 59.1649 53.9 45 59 1456.0 66 150.7 136.1 140.6 2.7 7.4 3.7
C2 2003-07-06 43.9589 59.0428 74.7 90 292 1448.8 145 147.7 131.8 131.0 4.1 8.8 1.2
C3 2003-07-14 43.9976 58.9147 70.9 90 193 1447.9 79 145.3 134.6 136.0 3.2 10.9 2.7
C4 2003-07-14 44.0329 58.7862 89.1 90 106 1450.3 105 148.6 138.8 132.8 5.3 13.7 1.4
D1 2003-07-07 43.8273 59.1138 66.7 85 91 1449.4 95 149.9 131.5 130.9 4.5 11.4 2.1
D2 2003-07-13 43.8696 58.9862 75.7 90 550 1452.3 36 151.7 138.4 131.5 5.7 14.1 1.1
D3 2003-07-13 43.9045 58.8528 90 252 1449.3
D4 2003-07-06 43.9447 58.7299 82.8 90 196 1448.0 82 152.0 132.6 139.5 1.7 5.5 5.2
E1 2003-07-07 43.7341 59.0547 50.7 90 309 1446.0 159 154.7 133.6 138.3 3.3 7.4 3.1
E2 2003-07-07 43.7727 58.9339 50.9 90 1300 1447.5 104 155.9 145.1 137.6 4.3 14.6 0.3
E3 2003-07-13 43.8171 58.8014 58.9 90 1100 1447.0 156 156.5 145.1 136.9 3.3 13.3 0.2
E4 2003-07-08 43.8535 58.6877 79.6 90 1220 1447.8 154 153.7 139.5 135.6 2.7 9.2 1.7
F1 2003-07-08 43.6420 59.0143 30.8 90 1250 1473.4 161 160.5 140.2 143.7 1.0 2.5 2.2
F2 2003-07-13 43.6893 58.8891 50.2 90 1300 1462.4 150 150.8 132.9 138.1 1.8 10.5 3.9
F3 2003-07-08 43.7247 58.7593 60.3 90 2500 1452.5 74 155.2 139.1 138.9 1.3 4.7 1.1
F4 2003-07-08 43.7655 58.6283 72.1 90 2000 1448.0 163 153.1 136.8 134.6 4.0 14.8 1.5

Min 30.8 4 131.0 117.0 122.6 1.0 2.5 0.2
Mean 67.9 96 152.2 137.7 136.3 3.4 9.8 2.4
Max 101.3 163 160.5 145.1 143.7 6.6 14.8 7.2

(dB re 1µPa)

Interpulse 
Difference 

Mean   Max.

 
 

Table 5. Date, location, hydrophone and bottom depth, sound speed at recording depth and estimates 
of peak sound pressure level, SPL and SEL and associated statistics at each recording 
station. 
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Figure 34. RMS Sound pressure level per pulse at station E3 in the Gully MPA. 
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Figure 35. Peak sound pressure, SPL and SEL at each recording station. 
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PROPAGATION 

General patterns of seismic noise propagation from the Marathon block into the Gully MPA can be 
observed from the spatial distribution of mean peak, SPLrms and SEL estimates (Figures 7-9). Given that 
the receive levels were not measured from a single source position, detailed conclusions pertaining to 
propagation patterns cannot be made directly from these figures. However, it is clear from Figure 36 that 
the peak levels decreased more consistently toward the north end of the Gully than for the SPLrms (Figure 
37), and the SEL (Figure 38) estimates. These figures also reveal a shadowing effect in the northwestern 
corner where sound levels were reduced sharply at stations behind the Sable Island Bank (SIB). This 
shadowing was obvious when the estimates are plotted in relation to the distance from the source (Figure 
39). All three metrics declined with distance, although again the SPLrms was more variable. Note the 
stations in the shadow of the SIB had lower than expected sound levels. The far-field sound levels from 
Austin and Carr (2004) were within the range of the present study, although lower than the mean amplitude 
given the distance from the source. Interestingly, this station was also partially shadowed by the SIB which 
could explain the below average values. 
 

 

Figure 36. Peak sound pressure and seismic vessel track for the July survey in the Gully MPA. 
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Figure 37. SPL and seismic vessel track for the July survey in the Gully MPA. 

 

 

Figure 38. SEL and seismic vessel track for the July survey in the Gully MPA. 
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Figure 39 Far-field measurements of peak, SPLrms and SEL of seismic pulses from the present study 
(circles) and Austin and Carr (2004) (grey diamond) in relation to distance from the source 
array. Open circles are from stations in the shadow of Sable Island Bank. 

Predictions from Moulton et al. (2003) 

One of the objectives of this study was to validate the accuracy of sound propagation model predictions 
using far-field measurements. Moulton et al. (2003) used a range-dependent acoustic model (RAM) to 
estimate frequency-specific 2-D transmission losses along selected tracks between the Marathon block and 
the Gully MPA. Although the sound propagation modelling resulted in a detailed characterisation of the 
predicted sound field, only a few of these predictions pertained to the far field. Moreover, comparisons 
between the field measurements and the RAM predictions could not be made directly, principally because 
the source vessel and recording vessels were not positioned along the modelled tracks (Moulton et al., 
2003; Fig. 5.5) due to changes in the survey scheduling. In addition, several parameters changed between 
the production of the environmental assessment model results and the field work. One significant change 
was the seismic sound source, from a 4450 in3 to a 3090 in3 dual airgun array (Austin and Carr, 2004) 
resulting in the actual source levels being approximately 3 dB higher (254 versus 251 dB re 1 µPa RMS). 
Other factors which differed were the time of the year (July versus June) and therefore the water mass 
structure and assumed sound velocity profile and the depth of recording versus the depth of predictions (90 
m versus 50 m), although both depths were within the sub-surface sound channel. 
 
Despite these caveats, comparisons were made between predicted and measured sound levels ( 
Table 6) between tracks and stations which were at similar distances from the seismic source to identify if 
there were significant deviations from predicted levels. For these comparisons, we used the same sound 
level calculation as Moulton et al. (2003) – (Table 7.3), i.e. the sound exposure level + 10 dB. This was 
necessary because the output of the transmission loss model does not provide an estimate of the pulse 
time window, and therefore SPLrms could not be calculated directly. 
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Track 
Prediction Range 

Recording 
Station Range 

Measured 
SEL+10

(km) (km) (dB)

Track C (Jun) 50.0 145.3 E1 49.5 148.3 3.0

Track C (Jun) 50.0 145.3 E2 50.2 147.6 2.3

Track C (Jun) 60.0 136.6 E3 58.3 146.9 10.3

Track C (Jun) 70.0 < 135.0 E4 78.9 145.6 > 10.6

Track A (Aug) 30.0 138.7 F1 30.5 153.7 15.0
Track B (Aug) 30.0 134.5 F1 30.5 153.7 19.2
Track C (Jun) 30.0 143.4 F1 30.5 153.7 10.3

Track C (Jun) 60.0 136.6 F3 60.3 148.9 12.3

Track C (Jun) 70.0 135.0 F4 71.9 144.6 9.6

Predicted 
SEL+10 Diff.

(dB) (dB)

 
 

Table 6. Comparison between sound propagation model predictions at various distances (identified 
by the track no.) in May and June (50 m) and field measurements (identified by station no.) 
at various stations in July (90 m). 

 
Prediction 1:  

“[The strong surface] sound channel weakens after February, but generally persists until late May.” 
 
Moulton et al. (2003) gave several transmission loss estimates for Track C, notably for May and June, 
when presumably water mass structure would have differed significantly. The principle difference between 
the spring and summer water mass structure was assumed to be the weakening of the surface sound 
channel, which they considered to be the major propagation feature in this region. This produced a 
significant decrease in the modelled receive level between May and June at 50 m (Moulton et al., 2003 - 
Table 7.3). 
 
Our sampling grid of CTD profiles (Figure 32) allowed us to estimate and interpolate temperature and 
sound velocity along vertical slices on the major axes of the grid (Figure 40). From these data, we can see 
a strong sub-surface sound channel which infiltrated the Gully area produced by a cold intermediate layer 
(CIL) trapped between the warm-surface and deep-bottom layers. These data also clearly show a gradient 
between the off-shelf area where the seismic shooting was taking place and the Gully/shelf area, where the 
CIL was a dominant feature (Figure 41). This sound channel was not predicted by Moulton et al. (2003), as 
only limited oceanographic data were presumably available for this area at the time of the model runs. 
Therefore, using sound velocity profiles from the offshore as input into the RAM for predicting transmission 
losses into the Gully MPA could significantly bias predicted transmission losses.  
 
Our sound level measurements recorded in July were higher than those predicted for June for similar 
distances (Table 6), while according to Moulton et al. (2003), they should have been considerably lower. 
However, our measurements were made at approximately 90 m, in the middle of the strong sub-surface 
sound channel, which may explain part of the discrepancy. 
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1 2

3 4

 
 

Figure 40. Sound velocity profiles along transect lines (1) A1-F1, (2) A2-F2, (3) A3-F3 and (4) A4-F4 
(see Figure 32) within the Gully MPA. 
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Figure 41. Interpolated sound velocity from the Marathon block (Dip 2 to Dip 5) through the Gully MPA 
(E1 to B4) relative to the hydrophone recording depth. 

 
Prediction 2: 

“Sound pressure levels (rms) for airgun events reach ambient levels at ranges greater than 100 km” 
 
Ambient noise levels were measured in both April and July at several stations (Figure 42). In April, no 
seismic shooting was ongoing, so noise levels should have been relatively “typical”. However, this being 
our first experience in collecting these data in the open ocean, there was often considerable platform-
related noise (PRN) on the recordings, especially at the shallower deployment depths (< 50 m). Therefore 
only the deep deployment (90 m) data were analysed. Also, despite our efforts to edit the data, many of 
these files were contaminated with PRN, mostly in the lower frequencies (< 40 Hz). 
 
In July, with the addition of a motion compensation system on the cable, and the hydrophone deployment 
at 90 m only, PRN was much reduced in the lower frequencies (Figure 42). Spectral densities of ambient 
noise in July were comparable to the levels assumed by Moulton et al. (2003) for the Gully (Desharnais and 
Collison, 2001). Therefore if prediction 2 had been true, seismic pulses should not be detectable from our 
recordings past 100 km. However, at station B4 (i.e. 104 km from the source), mean seismic pulse 
amplitudes were measured to be 134 dB re 1 µPa (RMS), at least 24 dB above ambient noise in high wind 
conditions. Not only were these pulses detectable, they would have been audible in the 250 – 630 Hz band 
to Beluga Whales, and presumable to northern bottlenose whales at this distance (Figure 43). Although 
ambient noise varies over time and space, clearly there are situations in the Gully MPA where propagation 
conditions allowed seismic noise to be detectable by instrumentation and audible by mid-sized odontocetes 
over 100 km from the source. The fact that our measurements were made in July rather than June as for 
the model predictions should not be a factor in this difference, since according to Moulton et al. (2003), 
propagation efficiency should have decreased over the summer. 
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Figure 42. Average ambient noise levels (1/3 octave bands) at 2 stations in April (A3, B2.5) and 2 
stations in July (C3 and F2) at 90-m depth in the Gully MPA. Note that April data below 40 Hz is 
contaminated with platform related noise. 

 

 
 

Figure 43. Sound level at station B4 (1/6 octave bands) in the Gully MPA with an audiogram for a 
beluga whale (Delphinapterus leucas) superimposed (black surface) 
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Prediction 3: 

“The worst case sound level at the MPA boundary [at 0.8 km from the source] is 164.5 dB at 50 m depth in 
May” 
 
No field measurements were taken at the location of the “worst case” identified by Moulton et al. (2003), 
therefore a direct comparison between measurements and predictions was not possible. Table 6 shows 
that in general, the measured receive levels in July were greater on average than the model predictions for 
June by 8.3 dB. This suggests that the worst case sound level would have been underestimated as well. In 
support, the model predicted that the sound level at 50 m depth at the boundary of the Gully Whale 
Sanctuary would be 145.6 dB at the closest approach of 15 km (Moulton et al., 2003; Table 7.5; Track A; 
Aug.), where as we measured the sound level at 90 m depth to be 147.6 within the Whale Sanctuary at a 
range of 51 km in July. By interpolation, the worst case sound level at the Gully Whale Sanctuary boundary 
would therefore be between 152.9 and 157.6 dB, depending upon whether one assumed spherical or 
cylindrical spreading, respectively. The environmental assessment therefore underestimated the receive 
levels at the Gully Whale Sanctuary boundary by 7 to 12 dB. Moreover, from near-field measurements in 
Austin and Carr (2004), we can extrapolate the sound pressure level at 0.8 km from the source, i.e. the 
worst case sound level at the MPA boundary, to be approximately 178 dB, again 14 dB higher than 
predicted in Moulton et al. (2003), and close to the 180 dB safety criteria. 
 
The field measurements in Table 6 represent approximations of RMS sound pressure levels, averaged 
over many pulses. There was nonetheless significant variability around these average values (Table 5; 
Figure 34). Some of this variability was from pulse to pulse, and some was over the period of the recording. 
Therefore, not only were average measured sound levels greater than estimated levels, individual pulses 
were several dB higher than these averages. 
 
Deviations in pulse amplitude over the time of the recordings should not strictly have been due to the 
effects of distance, the range of distances between source and reception for a given station was 0 – 5% of 
the total distance due to the displacement of the source vessel. The maximum SPL was often 5 dB above 
the mean, and on occasion as much as 9 dB higher. Therefore, it is not necessarily true that the average 
sound level predicted by the RAM at the closest point to the Gully MPA can be interpreted as the “worst 
case sound level”. Individual pulses can be significantly higher than the average. 

DISCUSSION 

The systematic sampling grid allowed us to produce an overall picture of the noise field within the Gully 
MPA, both ambient and that generated by airgun array pulses from a nearby 3D seismic survey. The 
rescheduling of the survey did not allow us to take field measurements from positions identical to the 
published RAM predictions, nor at the closest point of approach to the Gully MPA, however several 
recordings were made at similar distances from the source as were modelled. 
 
Our results showed that the predictions from Moulton et al. (2003) were on average underestimated by 
8 dB. This finding is significant since the results of sound propagation models are used by regulators to 
define the safety radius for marine mammals around seismic arrays. The field validation conducted during 
this and other studies as part of the Gully Seismic Research Program provided the means to monitor the 
sound levels and to observe that these sound levels were higher than expected. In fact, the near-field 
measurements reported in Austin and Carr (2004) were used to expand the safety radius from 500 to 
700 m during operations. 
 
Transmission loss models are important tools for indicating expected sound propagation patterns from a 
sound source such as a seismic array. However, these models are highly dependent on the accuracy and 
detail of the assumptions and environmental parameters put into them, including bathymetric, topographic, 
geoacoustic and oceanographic information (Carr et al., 2004). For example, Moulton et al. (2003) 
assumed that propagation efficiency would degrade over the summer with the disappearance of the 
surface sound channel, while measurements taken by ourselves and Austin and Carr (2004) showed that 
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propagation conditions in July were as good as or better than those estimated for June. The strong sub-
surface sound channel formed by the CIL was not input into the RAM and may have resulted in the 
underestimation of the predicted levels. Austin and Carr (2004) demonstrated that field measurements and 
model estimates can show good agreement, although for their comparison the RAM transmission losses 
were remodelled with oceanographic data taken during the seismic survey and source levels from the array 
actually used. They also presented data indicating large discrepancies (up to 10 dB) between estimated 
and measured sound levels for particular frequency bands and locations, indicating that some local 
environmental variability was not captured in the model. Our data showed that the specific characteristics 
of the regional sound propagation, such as the shadowing produced by the Sable Island Bank, can 
significantly affect expected sound levels. This underlines the importance of conducting extensive field 
validation under a variety of conditions. 
 
There is also a need to have some measure of the variability around the model estimates. Deterministic 
transmission loss models providing no indication of uncertainty must be used with caution. Sources of 
uncertainty will not only include the variable and possibly inaccurate physical parameters of the 
propagation model, but will also include pulse-to-pulse variation of the seismic array. To avoid exposing 
animals to higher-than-predicted energy pulses, a sufficiently wide buffer should be added to the estimated 
safety zone to reflect the margin of error. The present study has shown that errors in the order of 10 dB or 
more are not unusual. 
 
Although SPLrms is the most common unit used to compare sound levels between studies, this metric varies 
considerably depending on the width of the estimated pulse time window and can be considerably 
underestimated. This point is well illustrated by the major differences between SPLrms and peak sound 
levels (Table 5). In the present study, the mean peak level was 15 dB higher than the mean SPLrms and 
SEL. This gap was in part due to the difficulty in defining the RMS time window, since many of the pulses 
were drawn out in time, thereby reducing the SPLrms estimate. Our analyses showed that the inter-pulse 
variation in SPLrms could be as high as 10 dB over many station. When pulses were clearly defined, i.e. with 
few multi-path echoes, such as for stations E2 and E3, the SPL estimates were clearly higher, and the 
difference between the peak, SPL and SEL was approximately 10 dB each, as discussed by Malme et al. 
(1984). This suggests that the mean SPLrms is not the best metric for the description of the received level of 
pulsed sounds. 

CONCLUSIONS 

From this study, several conclusions can be drawn: 
 

1) The highest average sound pressure level (RMS) measured in the Gully MPA was 145 dB re 1 µPa 
at 90 m depth, 50 km from the seismic array. This sound level was measured within the Gully 
Whale Sanctuary while the seismic vessel was surveying the western portion of the exploration 
block. It was estimated that sound levels in the Whale Sanctuary would have been higher, between 
approximately 153 and 157 dB, when the vessel was at its closest approach to the Gully in the 
eastern portion of the survey block. The “worst case” sound level at the Gully MPA boundary, i.e. 
0.8 km from the source, can be estimated from the extrapolation of near-field measurements in 
Austin and Carr (2004) to be about 178 dB, 14 dB higher than predicted in Moulton et al. (2003). 

 
2)  Models predict average conditions and do not capture the spatial and temporal variability of the real 

environment. Measured sound levels were significantly higher than the model predictions at several 
stations. In addition, the range of audibility of seismic pulses to a mid-sized odontocete similar to a 
Northern Bottlenose Whale was significantly underestimated relative to the model predictions. This 
demonstrates the importance of using accurate model input data, the importance of field validation 
and the need to have a measure of the variability around the mean sound level estimates. 
Transmission losses should be re-modelled if actual field conditions differ from assumptions. 

 
3) Sound pressure levels (RMS) varied considerably in relation to the width of the estimated pulse 

time window, which was dependant on the magnitude of multi-path arrivals. Although SPLrms is the 
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standard measurement for comparison to safety limit criteria for marine mammals, it is not a good 
metric for the description of pulsed sounds due to the inconsistency of the pulse time window. 
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Near-bottom ocean acoustic observations in the Scotian Shelf Gully 
Marine Protected Area during an exploration seismic survey. 
 
Norman A. Cochrane 
Fisheries and Oceans Canada 
Bedford Institute of Oceanography, 1 Challenger Drive, PO Box 1006, Dartmouth, Nova Scotia, B2Y 4A2 

ABSTRACT 

Cochrane, N.A.  2005. Near-bottom ocean acoustic observations in the Scotian Shelf Gully Marine Protected Area 
during an exploration seismic survey. Pages 75-88, In, K. Lee, H. Bain, and G.V. Hurley, Eds. 2005. Acoustic 
Monitoring and Marine Mammal Surveys in The Gully and Outer Scotian Shelf before and during Active Seismic 
Programs. Environmental Studies Research Funds Report No. 151, 154 p + xx.  
 
Four operational hydrophone-equipped instrument packages were bottom-deployed in 1000-1700 m water depths in 
the Scotian Shelf Gully Marine Protected Area during an exploration seismic survey. Analysis of autonomously-
recorded acoustic data indicated that seismic impulses are clearly visible at typical shooting ranges of 40-60 km and 
are frequently sufficiently elongated in time so as to dominate acoustic background levels over all or most of the 11 s 
inter-pulse interval. Frequently observed “click” type signals with significant spectral content below 2 kHz are ascribed 
to sperm whale vocalizations. A single operational “click detector” logged contrasting higher frequency click signals in 
the central Gully. These are tentatively attributed to northern bottlenose whales. Anticipated spectral domain received 
seismic levels are modeled using a seismic source array model in conjunction with a Parabolic Equation sound 
propagation model. Discrepancies on comparing predicted and observed levels are ascribed to limitations in field 
measurements and/or predictive modeling methodologies. Future improvements in instrumentation and methodologies 
are suggested. 
 

INTRODUCTION 

As part of an inter-institutional effort organized by the Centre for Offshore Oil and Gas Environmental 
Research (Gully Seismic Research Program), the Ocean Sciences Division (OSD) at BIO undertook a pilot 
study of exploration seismic origin sound propagated into the Scotian Shelf Gully. Specifically, sound 
originating from the Marathon Canada Ltd. commissioned seismic vessel Ramform Viking, in the western 
half of Scotian Shelf Exploration Lease 2410 (Cortland) was recorded near-bottom (�  1000 m water depth) 
within the Gully Marine Protected Area (MPA). The effort, utilized modified Geological survey of Canada 
(GSC) Ocean Bottom Seismometers (OBS) equipped with hydrophones to record water column sound 
pressures. Principal objectives were to: 
 

1) Monitor near-bottom acoustic noise levels originating from an exploration seismic survey during 
close survey approaches to the Gully Marine Protected Area, together with the background 
ambient noise field. 

2) Identify cetacean vocalizations, especially those of the endangered northern bottlenose whale any 
systematic changes in vocalization patterns which might be correlated with the presence of 
exploration seismic noise. 

3) Compare measured seismic acoustic levels at long range from the seismic source with theoretical 
predictions. 

 
The OBS near-bottom observations complement near-surface acoustic observations conducted by JASCO 
Research Ltd., the Institut Maurice Lamontagne, and the University of Quebec at Rimouski, reported 
elsewhere in this compendium. This report constitutes a summary of a fuller exposition in a parallel 
Canadian Technical Report of Fisheries and Aquatic Sciences report. 
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MEHODS 

INSTRUMENTATION 

Six OBS instruments were constructed or modified under a contact awarded to Omnitech Electronics Ltd. 
(Dartmouth, Nova Scotia) by the Geological Survey of Canada. Three modified OBS’s were configured to 
record, for later retrieval, the output of a single 0.002 – 2 kHz bandpass-filtered hydrophone channel 
sampled at 5 kHz to 16-bit resolution. Three newly constructed dual-channel instruments additionally 
sampled and recorded at 5 kHz the output of an additional “click detector” channel. The click detector 
signal path consisted initially of an envelope detector applied to the broad-band hydrophone signal. This 
was followed by a 2 kHz low-pass filter and a DC-blocking high-pass filter so as to furnish a distinctive, 
nearly unipolar output for click signals of rapid envelope rise time and dominant frequency content above 
the 2.5 kHz Nyquist folding frequency of the direct hydrophone channel. The output should include clicks 
emanating from the endangered northern bottlenose whale with frequency content up to at least 20 kHz 
(Hooker and Whitehead, 2002). Measured OBS electronics characteristics were combined with known 
hydrophone sensitivities to yield overall system calibrations. The OBS were designed for continuous 
recording from a pre-programmed start-up time with the exception of periodic 87 s gaps approximately 
every 30 minutes (dual-channel) or 1 hour (single-channel) in order to write accumulated data to internal 
mass storage. 
 
For sound speed profile determination, relevant oceanic data were gathered from deep Seabird CTD 
(Conductivity-Temperature-Depth) profiles from CCGS Hudson in the general Gully region preceding the 
experiment, and from XBT (Expendable Bathythermograph) measurements and XSV (Expendable Sound 
Velocity) profiles collected during the experiment. Reference is also made to complementary CTD data 
collected by both Ramford Viking and Strait Signet. 

ACOUSTIC LEVEL PREDICTION 

Predicting received acoustic levels at a given location from a given seismic source requires both a spectral 
seismic source model and a compatible range-dependent acoustic propagation model. The received 
spectral sound pressure level, SPL, (in dB re to 1 ì Pa2/Hz) at frequency f, receiver range R, and depth d, 
can be related to the modeled seismic source SL measuredat a reference range of 1 m from the source at 
depth z, using an acoustic propagation model derived transmission loss, TL:  
 

),,,(),,m1(),,( fzdRTLfzSPLfdRSPL +=                                                       (1) 

Seismic Source Array Model 

Ramform Viking employed dual 3090 cu.  in., 2500 psi airgun arrays discharged at 22 s intervals staggered 
to yield 1 shot every 11 s. Each array consisted of 3 parallel, non-identical sub-arrays at 12.5 m lateral 
separation. Constituent SODERA G guns of 20 to 250 cu. in. capacity were suspended at 6 m depth.  
About half the sources consisted of gun-pairs or “clusters”. An array time domain pressure signature can be 
approximated by adding individual gun pressure signals and water surface reflections with proper path 
delays. However, real airguns mutually interact (Vaage et al., 1984, Ziolkowski et al., 1982, Nooteboom, 
1978, Giles and Johnston, 1973). For 20, 100, and 250 cu. in. airguns, significant interaction distances are 
about 1 – 2 m, 1.5 – 3 m, and 2 – 4 m respectively (Vaage et al., 1984). Adjacent sub-arrays should not 
interact. Spacing the largest airgun clusters 3 m from adjacent guns on sub array ends also limits 
interactions. We utilized an in-house developed array model based upon non-interactive linear gun 
summation excepting gun-pairs which were characterized as separate distinctive entities (source model 
detailed in companion document). Limited data characterized gun-pulse rise times (Verbeek and McGee 
1995, Johnston 1980, Wardle et al. 2001). Spectral domain source levels are derived from the squared 
Fourier transforms of the time domain summations with suitable smoothing. Figure 44 shows computed 
Viking array radiation patterns. 
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Acoustic Propagation Model 

Acoustic propagation models were of the Parabolic Equation (PE) type (Jensen et al., 2000), specifically 
the RAM split step Padé model (Collins, 1993). Public domain FORTRAN code was adapted to a MS 
Windows environment and customized to include real-time graphics and direct input of XBT, XSV, and CTD 
profiles for sound speed profile characterization. Good performance was expected for energy propagating 
up to about 750 from the horizontal. An omnidirectional PE model source was assumed for TL estimation. 
Subsequent received levels were derived from Eq. 1, setting the source SPL to the far-field array model 
derived value for sound emitted close to the horizontal. Water surface reflections are not included at source 
but are implicitly added by the PE model. 
 

 
 

Figure 44. Ramform Viking far field airgun array radiation pattern 100 below horizontal plane for 25 Hz 
(red), 50 Hz (yellow), 100 Hz (green), 200 Hz (lt. blue), and 400 Hz (dark blue). Values in dB 
re 1 ì Pa @ 1 m relative to a 100 dB baseline (center origin). Radiated pressure spectra are 
derived from 32768 pt. synthesized time series (6.55 s) averaged (smoothed) over 1/3 
octave bands centered on the nominal frequencies. Towing direction is toward top of 
diagram. Water surface reflections are not included. 

 

FIELD EXPERIMENT 

OBS’s were field deployed (Table 7, Figure 45) on June 17th and successfully recovered on July 4th utilizing 
CCGS Edward Cornwallis via contract to Geoforce Consultants Ltd. Dual-channel (i.e. click detector 
equipped) OBS’s (Stations #1, 2 and 3) were placed along a 10 km line near the Gully axis transecting the 
known northern bottlenose whale congregation area (Hooker et al., 1999) within the MPA. Single-channel 
OBS instruments (Stations #4, 5 and 6) were placed near the intersection points of track lines “A”, “B” and 
“C” which were acoustically modeled in a pre-survey Environmental Assessment (Moulton et al., 2003). 
Station #2 and 3 OBS’s failed on deployment while Station #4 recorded only a 3-day data set. Stations #1, 
5, and 6 acquired full data sets. XBT and XSV profiles were gathered at OBS deployment and recovery 
sites. Only a subset of the XBT profiles was of sufficient quality to establish useful sound speed profiles. 



GULLY SEISMIC RESEARCH PROGRAM COCHRANE 
 

 78

 
Figure 45. Gully Survey Area. The orange enclosed area outlines Exploration Leases (EL) 2410 and 

2411 (Cortland and Empire from west to east). The green enclosed area is the southern 
portion of the Gully Marine Protected Area. Red square symbols show the 6 OBS 
deployments. Blue square symbols A1 – A4 show the location of seismic vessel M/V 
Ramform Viking for selected analysis profiles #1 through 4 respectively (grey lines). 

 
Table 7. Locations, depths, and recording periods of deployed OBS’s. 

 
Stat. Lat. Long. Depth 

(m) 
Ch. Start Z Stop Z Status 

1 430 55.434' 580 58.592' 1000 2 28/06/2003 15:00 03/07/2003 18:22 Good 

2 430 51.500' 580 55.879' 1300 2 - - Inoperative 

3 430 50.483' 580 55.198' 1300 2 - - Inoperative 

4 430 48.521' 580 58.057' 1200 1 23/06/2003 15:00 26/06/2003 19:26 Partial 

5 430 39.599' 580 54.896' 1700 1 23/06/2003 15:00 03/07/2003 10:06 Good 

6 430 38.144' 590 02.735' 1200 1 23/06/2003 15:57 03/07/2003 13:04 Good 
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ANALYSIS 

BASIC ACOUSTIC OBSERVATIONS 

Seismics 

Seismic pulse envelopes at 40 - 60 km source range typically consisted of a 0.5 s rise followed by a 
roughly exponential decay of 1.5 - 2.5 s time constant. Signal levels often remained above ambient 
background for the entire 11 s inter-pulse interval. Signal levels at Stations #1 and 5 with indicated periods 
of active shooting are shown in Figure 46. Station #6 resembled Station #5. Station #4 acquired only a 
short dataset. Levels at Stations #5 and 6 were more noticeably enhanced during periods of seismic 
shooting than those at Stations #1 and 4. During quieter non-shooting periods, 5 minute RMS ambient 
noise levels at all recording stations were fairly similar, about 100 dB re 1 ì Pa at Station #1 and 2 – 3 dB 
higher at Stations #4, 5 and 6. Quiet period ambient noise spectra (companion document) showed 
especially good agreement in the 10 – 80 Hz range. Station #1 was subject to regularly recurring periods of 
late-day noise averaging about 117 dB RMS and with a strong 37 Hz component suggesting a ship origin. 
These noise enhancements rivaled or even obscured seismic origin noise at Station #1 but were not 
observed at the other three stations. Within the northern bottlenose whale concentration area, the 
maximum seismic 0-peak signal level (Station #1) was 139.4 dB occurring at day 179.181 while Viking was 
just south of point “A4” (Figure 45) at 55.9 km range. The maximum level occurred during an ~ 8 min. 
period of enhanced seismic signal levels outside of which 0-peak levels were typically of the order of 128 – 
130 dB 0-peak. The corresponding RMS level in a 1 s window centered on the highest signal was 128.8 dB 
corresponding to the Sound Exposure Level (SEL) of Davis et al. (1998). Maximum 0-peak levels at 
Stations #5 and 6 are estimated to be in the vicinity of 146 and 150 dB respectively after making 
reasonable allowances for clipping in the strongest received signals. The above quoted levels utilized the 
full analog passband of the OBS system. 

Marine Mammal Vocalizations 

At all stations a semi-continuous background of clicks attributed to biological origin could be detected 
audibly on the direct hydrophone channel, or visually on taking the signal 1st digital derivative (DD), i.e. 
successive amplitude differences, indicating considerable click energy below 2 kHz. Such clicks repeated 
regularly at about 1 s intervals over periods of several minutes. These were tentatively identified as sperm 
whale clicks (Goold and Jones, 1995, Richardson et al., 1995, Mullins et al., 1988, Watkins et al., 1985). At 
Station #1 the click detector revealed distinctive bursts (~ 10/s) of “one- sided” clicks without direct 
hydrophone DD counterparts (Figure 47). These were tentatively attributed to the northern bottlenose 
whale. Two bursts (shown) of 6-7 clicks of roughly 0.1 s inter-click separation are reasonably characteristic 
of “surface” type northern bottlenose whale clicks (Hooker and Whitehead, 2002). Assuming the click 
detector to discriminate northern bottlenose whale clicks, Station #1 data was analysed to explore possible 
relationships between northern bottlenose whale clicks and periods of seismic shooting the results of which 
are reported in a separate document22. 

                                                   
22Laurinolli, M. and N. Cochrane.  Hydroacoustic analysis of marine mammal vocalization data from ocean bottom seismometer 
mounted hydrophones in the Gully.  Can. Tech. Rep. Fish. Aquat. Sci. (this issue).  
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Figure 46. Broadband acoustic levels (dB re 1 ì Pa) at OBS Stations #1 (top) and 5 (bottom). Red – 

Maximum 0-peak acoustic amplitude observed within consecutive 300 s intervals. Green – 
RMS amplitude over same interval. Blue – Minimum RMS amplitude over any consecutive 
1 s interval within 300 s interval. Magenta horizontal lines indicate active shooting periods. 
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Figure 47. Station #1 records comparing output of click detector (top) and the digital derivative, 5 kHz 
sampled hydrophone channel (bottom). Amplitude scaling is arbitrary. 

 

ACOUSTIC LEVELS MODELING 

Propagation Considerations 

From winter until May or June, near-surface origin Scotian Shelf sound is efficiently captured in a sound 
channel centered at about 70 m depth and propagates to long range with minimal bottom interaction 
(Macpherson and Fothergill, 1962). Later a high velocity channel “lid” forms by growth of the seasonal 
thermocline, limiting trapping, and, at Shelf depths, results in stronger bottom interactions and more rapid 
sound attenuation with range. For the present PE modeling, a single sound speed profile, displaying a 
distinct sound channel, was derived from a Station #5 (deployment) XBT to 828 m combined with April and 
May Hudson CTD profiles to 2975 and 1616 m respectively. A sound speed profile from a June 29th Viking 
CTD (Austin et al., 2004) and profiles from a CTD grid over the entire Gully area by IML from Strait Signet 
from July 5-14 (McQuinn et al., 2004) are generally compatible. A later Station #5 (recovery) XBT revealed 
intrusion of contrasting water lacking a near-surface (< 200 m) sound channel also suggested by the 
southernmost IML profiles. 
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The outer Scotian Shelf seafloor is characterized by exposed sequences of sand and gravel on the outer 
shelf and uppermost slope to about 500-700 m water depth. Beyond the 700 m contour, the seafloor 
consists predominately of clay and silty-clay, forming a 2 m-thick, acoustically transparent drape over 
glacial-marine sediments of silty-clay with sand (Mosher et al., 2004). Our PE models assume an infinite 
depth bottom of 1750 m/s compressional sound speed, 1.9 specific gravity (S.G.), and 0.7 dB/wavelength 
(ë) attenuation consistent with waterlogged sand/gravels (Jensen et al., 2000, Clay and Medwin, 1977). 
OBS levels were modeled 2 m above this bottom thereby simulating the presence of 2 m of sediments 
below the instrument with acoustic properties matching seawater. 

Specific Applications 

To examine the predictability of observed acoustic levels, model OBS spectral levels were computed using 
Eq. 1 for four contrasting acoustic propagation profiles (Figure 45): 
 

1) Profile #1 – Downslope from point A1 across Station #5 at 41.3 km range. 
2) Profile #2 – Dominantly across-slope near the 1000 m contour from point A2 and crossing 

Stations #6 and #5 at ranges of 31.5 and 42.2 km respectively. 
3) Profile #3 – Upslope from point A3 passing near Station #6 at 48 km range and then downslope to 

Station #4 at 67.6 km. 
4) Profile #4 – Upslope from point A4, across a shallow expanse (~90 m) of outer Continental Shelf, 

then downwards into the Gully crossing Station #1 at 54.6 km. 
 
The RAM PE model was used to compute profile-specific transmission loss (TL) at given ranges and 
depths at frequencies of 25, 50, 100, 200, and 400 Hz. To smooth rapid spatial variations in single 
frequency model TL’s, estimates were averaged over 10 frequencies spanning 1/3 octave centered on the 
nominal frequency. For each source level in Eq. 1, a 32K pt., 5 kHz rate time series representation of the 
far-field source pressure was computed at 100 from the horizontal plane at the source azimuth (Davis et al., 
1998). The squared FFT of the resultant time series was summed over +ve and –ve frequencies and 
divided by the spectral bandwidth to yield spectral source levels scaled in ì Pa2/Hz. Source levels were 
further smoothed over 1/3 octave bandwidths. 
 
Analytical results are presented for each profile but illustrative details for Profile #1 only; details for the 
remaining profiles appear in the companion document. Inspection of the received waveforms (Figures 44 & 
48) suggests that Profile #1 Station #5 seismic energy remains above ambient levels for at least 6 s 
following the initial signal rise. The matching Adobe Audition23sonogram shows “persisting” seismic energy 
to be concentrated at 50 Hz and below with only minor contributions above 200 – 300 Hz. Colour-coded TL 
sections at 25 and 200 Hz24 with the cylindrical spreading (10 log R) losses removed are shown in Figure 
49. Superimposed are vertical profiles of absolute TL including cylindrical spreading at the range of 
Station #5. The “trapping” effect of the surface sound channel is observed to be more pronounced at 200 
than at 25 Hz. 
 
 

                                                   
23 Adobe and Adobe Audition are trademarks or registered trademarks of Adobe Systems Inc. 
24 Shown is the colour-coded TL at the end frequency (nominal + 1/6 octave) for 1/3 octave averaging or about 12% higher than 
nominal frequency. The superimposed TL profile is averaged over the full 1/3 octave interval. 
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Figure 48. Profile #1 Station #5 direct hydrophone OBS signal amplitude (top) and corresponding 
sonogram based on 1024 pt. FFT (bottom). Time series duration is 55 s. Signal amplitude is 
linear in ì Pa and sonogram vertical axis is linear in Hz. 
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Figure 49. Profile #1 RAM model relative transmission losses at 25 Hz (top) and 200 Hz (bottom). Blue 
to red represent decreasing losses or higher acoustic intensities. A 10 log R range 
compensation has been applied to color-coded values to emphasize non-cylindrical 
transmission losses. Station #5 absolute transmission loss averaged over 1/3 octave 
bandwidth is shown in vertical profile. Insert shows utilized sound speed profile. 

 
Table 8 lists profile-specific “Observed” and “Predicted” OBS seismic spectral levels. “Observed” estimates 
were computed and smoothed analogous to seismic source levels but averaged over 10 discrete 32K pt. 
(6.55 s) recorded time series, each initiating just prior to consecutive seismic arrivals. “Noise Corrected” 
OBS levels were computed assuming the final 25% of each spectral time series consists of pure ambient 
noise. Noise spectral levels were used to correct “Observed” spectral levels generally resulting in more 
accurate estimates of seismic levels at greater than 200 Hz. “Predicted” OBS levels were computed as 
outlined above. 

DISCUSSION 

The maximum seismic signal levels of about 129 dB RMS (1 s window) observed at long range in the Gully 
Whale Concentration Area (Station #1) are much below the approximate 160 dB RMS levels at which 
strong behavioural responses have been previously observed in baleen whales (Davis et al., 1998). The 
thresholds for behavioural responses for toothed whales, including the northern bottlenose whale, are 
unknown but are anticipated to be higher than those for baleen whales. 
 
Unfortunately, no measurements were conducted when Viking was in the easternmost portion of EL 2411 
(Empire) where deep water path lengths into the Gully whale concentration area would be approximately 
35 km. One might speculate that such acoustic levels would be comparable to the maximum observed 
(allowing for clipping) at Stations #5 and 6. Highest 1 s RMS levels at Station #5 are estimated near 135 dB 
in analogy with Station #1. Highest levels at Station #5 tended to occur near the mid-point of N-S seismic 

                                                   
25 Adobe and Adobe Audition are trademarks or registered trademarks of Adobe Systems Inc. 
26 Shown is the colour-coded TL at the end frequency (nominal + 1/6 octave) for 1/3 octave averaging or about 12% higher than 
nominal frequency. The superimposed TL profile is averaged over the full 1/3 octave interval. 
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transects when Viking was about 45 km distant over a deep water path (differential 10 log R cylindrical 
spreading losses between 35 and 45 km ranges are only 1 dB). Comparable levels at Station #6 should be 
about 139 dB RMS on making reasonable assumptions about the effects of signal clipping. 
 
Table 8. Comparison of observed and predicted seismic spectral levels at OBS stations on selected 

profiles. 

 
Profile 1 Station 5 June Sound Speed Structure (RAM Model 1/3 Octave Averaged Values)  

Freq 
Hz 

Source Level 
Bar-m2/Hz 

Source Level 
dB re 1 ìPa2/Hz 

TL 
dB 

Observed 
OBS Level 

dB re 1 ìPa2/Hz 

Noise Corrected 
OBS Level 

dB re 1 ìPa2/Hz 

Predicted 
OBS Level 

dB re 1ìPa2/Hz 

25 5.208E-03 197.17 -116.60 93.99 93.27 80.57 

50 1.908E-03 192.81 -115.10 88.27 86.77 77.71 

100 2.000E-03 193.01 -112.30 92.57 92.22 80.71 

200 1.069E-04 180.29 -111.10 81.22 80.97 69.19 

400 4.206E-05 176.24 -115.60 66.65 66.05 60.64 

 
Profile 2 Station 5 June Sound Speed Structure (RAM Model 1/3 Octave Averaged Values)  

Freq 
Hz 

Source Level 
Bar-m2/Hz 

Source Level 
dB re 1 ìPa2/Hz 

TL 
dB 

Observed 
OBS Level 

dB re 1 ìPa2/Hz 

Noise Corrected 
OBS Level 

dB re 1 ìPa2/Hz 

Predicted 
OBS Level 

dB re 1ìPa2/Hz 
25 5.064E-03 197.04 -98.30 100.28 99.70 98.74 

50 2.093E-03 193.21 -95.50 93.01 92.09 97.71 

100 2.373E-03 193.75 -88.50 89.94 89.46 105.25 

200 1.535E-04 181.86 -85.00 80.54 80.30 96.86 

400 3.375E-05 175.28 -84.40 65.76 65.32 90.88 

 
Profile 3 Station 6 June Sound Speed Structure (RAM Model 1/3 Octave Averaged Values)  

Freq 
Hz 

Source Level 
Bar-m2/Hz 

Source Level 
dB re 1 ìPa2/Hz 

TL 
dB 

Observed 
OBS Level 

dB re 1 ìPa2/Hz 

Noise Corrected 
OBS Level 

dB re 1 ìPa2/Hz 

Predicted 
OBS Level 

dB re 1ìPa2/Hz 
25 1.230E-02 200.90 -95.17 104.63 98.07 105.73 

50 2.624E-04 184.19 -90.43 102.01 100.39 93.76 

100 4.649E-05 176.67 -84.97 87.65 80.36 91.70 

200 3.974E-05 175.99 -80.10 82.20 - 95.89 

400 6.076E-06 167.84 -80.90 73.53 72.67 86.94 

  
Profile 4 Station 1 June Sound Speed Structure (RAM Model 1/3 Octave Averaged Values)  

Freq 
Hz 

Source Level 
Bar-m2/Hz 

Source Level 
dB re 1 ìPa2/Hz 

TL 
dB 

Observed 
OBS Level 

dB re 1 ìPa2/Hz 

Noise Corrected 
OBS Level 

dB re 1 ìPa2/Hz 

Predicted 
OBS Level 

dB re 1ìPa2/Hz 

25 8.791E-03 199.44 -116.60 90.33 87.18 82.84 

50 8.851E-04 189.47 -119.15 85.56 82.26 70.32 

100 1.902E-04 182.79 -110.50 86.28 85.58 72.29 

200 2.435E-06 163.86 -103.70 77.93 77.30 60.16 

250 1.092E-05 170.38 -103.60 75.55 75.04 66.78 

400 8.768E-06 169.43 -98.70 64.12 63.06 70.73 

 
The modelled profile into Station #1 as well as the very low seismic levels observed at Station #4 
demonstrate that locally downslope propagation paths tend to shield the deeper reaches of the upper Gully 
from seismic energy originating from, at least, the western portions of the current survey area. Note that the 
downslope shielding effect does not apply to energy trapped in the shallow sound channel < 150 m depth 
where capture efficiency is very sensitive to the seasonally variant sound speed structure near the depth of 
the seismic source. 
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Agreement between observed and predicted OBS levels over the complete frequency range recorded in  is 
not especially good for any of the four profiles. Profile #4 discrepancies are reduced on assuming a harder 
bottom (companion document). Alternative use of the July (Station #5 recovery) water column sound speed 
profile produces markedly poorer agreement for shallow-water Profile #4 but little change for dominantly 
deep-water Profile #3. Sources of inconsistency may include: 
 

1) The deep-water nature of OBS deployments resulting in spatially “spotty” signal levels critically 
dependent on the instrument location relative to narrow ray-like deep-water propagation paths and 
convergence zones. 

2) Transmission loss for paths traversing the continental shelf (< 150 m) being critically dependent on 
the shallow sound speed profile and bottom acoustic properties. 

3) Computed near-bottom acoustic intensities having large vertical gradients sensitive to local 
sediment properties due to measurements extremely close to a major interface. 

4) Uncertainties in hydrophone sensitivities and patterns, especially above 100 Hz, due to the 
hydrophone mounting methodologies employed (semi-enclosed mounts on the OBS body may 
induce pattern distortions as the 1.1 x 1.2 x 0.6 m dimension OBS approaches transition from a 
“Raleigh” to a “geometric” acoustic scatter at just over 400 Hz). 

5) Uncertainties in airgun signature rise times resulting in corresponding uncertainties in source array 
spectral signatures at 200 Hz and above. 

6) Propagation uncertainties arising from 3-dimensional reverberation effects for profiles traversing 
the shelf/slope obliquely not properly handled by the 2-dimensional models employed. 

CONCLUSIONS 

1) Calibrated ocean bottom instrumentation for long-term, low-noise monitoring of both seismic 
signals and marine mammal vocalizations has been constructed and field tested. A unique integral 
“click detector” reveals whale click signals of dominantly high frequency (> 2 kHz) spectral content 
while using low digital sampling rates. 

2) The predictability of measured ocean-bottom seismic acoustic levels is not particularly good. It is 
uncertain whether this is due primarily to limitations in the field measurements or limitations in the 
predictive modeling methodologies employed. 

3) Flexible MS Windows-based analytical tools have been developed and are currently available 
within DFO to display OBS recordings, to perform time and frequency domain signal 
characterization, to model exploration seismic sources, and to model seismic sound propagation 
within range-dependent ocean environments. 

RECOMMENDATIONS  
 

1) OBS improvements for near-bottom observations: 
a) A recording firmware upgrade from FAT16 to FAT32 internal data storage formats for 

extended recording endurance  
b) A higher dynamic range A-D converter to accommodate closer measurements to the 

shooting vessel while maintaining ambient background limited performance  
c) Instrument “intelligence” to gather short, triggered, high-rate samples of mammal 

vocalizations for time-spectral domain species identification  
d) “Floating” recording hydrophones at least ¼ wavelength above bottom to alleviate 

analytical modeling uncertainties arising from both sampling excessively close to the 
bottom and hydrophone pattern distortions from too proximate mounting to the OBS 
superstructure (some monitoring objectives may still require measurement very close to 
the bottom). 

e) A more accurate time base to facilitate multi-instrument mammalian click triangulation. 
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2) Development of low noise, deep-water acoustic moorings equipped with multiple autonomous 
sensors/recorders to acoustically characterize the full water column over extended temporal periods. 
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ABSTRACT 

Laurinolli, M.H. and N.A. Cochrane. 2005. Hydroacoustic analysis of marine mammal vocalization data from ocean 
bottom seismometer mounted hydrophones in the Gully. Pages 89-96, In, K. Lee, H. Bain, and G.V. Hurley, Eds. 2005. 
Acoustic Monitoring and Marine Mammal Surveys in The Gully and Outer Scotian Shelf before and during Active 
Seismic Programs. Environmental Studies Research Funds Report No. 151, 154 p + xx.  
 
Acoustic data were collected using ocean-bottom seismometers (OBS) equipped with hydrophones sampling at a rate 
of 5000 Hz in the Gully off Nova Scotia during a 14.0 h period of seismic airgun operations and a 15.6 h period 
immediately after seismic operations ceased. These data were analysed for the possible presence of bottlenose whale 
clicks. Data from one OBS recording high frequency demodulated signals clearly revealed the envelopes of high 
frequency sounds presumed to be bottlenose whale clicks since they corresponded with visual whale sightings. 
Algorithms produced to automatically detect and enumerate clicks in the data showed a greater number of clicks during 
seismic operations (14.0 ± 9.3 clicks/min, 95% CI) than after seismic operations ceased (3.4 ± 2.4 clicks/min). There 
was no significant difference in the mean click interval during seismic activity (0.6 ± 0.06 s) and after seismic activity 
ceased (0.7 ± 0.08 s). Conclusions on whale behaviour could not be drawn from these results due to the size of the 
dataset and lack of information prior to seismic operations. 

INTRODUCTION 

The Gully off the coast of Nova Scotia has become the first Marine Protected Area in Atlantic Canada. It is 
apparently the year-round habitat, along with other nearby deep canyons (Whitehead et al., 1997), of the 
endangered Scotian Shelf population (listed by COSEWIC 2002) of northern bottlenose whales 
(Hyperoodon ampullatus). The Gully area is also of interest to industry for oil and gas exploration and 
development. In summer 2003, a joint venture between Marathon Canada Petroleum ULC and Fisheries 
and Oceans Canada was undertaken to run a pilot study on the potential impacts of seismic airgun noise 
on bottlenose whales in the Gully. The acoustic portion of this Gully Seismic Research Program involved 
measurement of the airgun shots and marine mammal sounds using various types of instrumentation by 
several research groups. This report focuses on isolation of possible northern bottlenose whale sounds 
from data collected using ocean bottom seismometer mounted hydrophones. 

MATERIALS AND METHODS 

Four out of six ocean-bottom seismometers (OBS) equipped with receiving hydrophones and deployed in 
the Sable Gully between 23 June and 3 July 2003 successfully recorded acoustic data (Figure 50). The 
instruments at stations #2 and #3 failed after deployment. Each functional instrument recorded data onto a 
single channel low pass filtered at 2 kHz, high pass filtered at about 2 Hz and then digitized at a sampling 
frequency of 5000 Hz. In addition, the OBS at station #1 also recorded a second channel of higher 
frequency demodulated data intended to act as a “click detector”. The two failed systems had also been 
equipped with click detector channels. The click detector captured the signal envelope for sounds to above 
20 kHz which was subsequently low pass filtered at 2 kHz, then high pass filtered at 0.16 Hz before 
digitization at the standard 5 kHz sampling frequency. The single operational, click detector-equipped OBS 
was located at the north end of the array and was deployed at about 1000 m depth (see Figure 50). 
OBS #1 recorded data from 28 June 15:00 UTC (12:00 ADT) to 3 July 18:22 UTC (15:22 ADT). Data files 
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of 28 min length were recorded with gaps of 1.4 min between files. The other three OBS’s sampled at 
frequencies too low to detect bottlenose whale clicks. 
 
Seismic data acquisition for Marathon Canada with vessel Ramform Viking southwest of the Gully (see 
Figure 50) occurred from 23 June 09:29 UTC (06:29 ADT) to 29 June 05:12 UTC (02:12 ADT), the end of 
which coincided with the first 14 h of OBS #1 data recording time. A break in seismic operations occurred 
on 28 June from 20:40 to 22:40 UTC. Another 15.6 h of data were analysed for clicks after the seismic 
survey was completed. No acoustic data were available prior to the start of the seismic survey.  
 
Literature on bottlenose whale sounds report peak frequencies in the range of 2-24 kHz (Hooker and 
Whitehead, 2002, Winn et al., 1970). Thus, only data from the second channel of the station #1 containing 
the higher frequency demodulated signals were useable for bottlenose whale click analyses. No bottlenose 
whale clicks were detectable in the other data. In channel 2 data, high frequency bottlenose whale clicks 
appeared as negative spikes in the waveforms that could be distinguished from sperm whale clicks that 
also had a positive component of similar amplitude (Figure 51). In other words, the sperm whale clicks 
were symmetric about zero while bottlenose whale clicks contained a brief, strongly asymmetric, negative-
going excursion. 
 
 
 

 

 
Figure 50. Map of the study area with the four functional ocean-bottom seismometers (1, 4, 5 and 6) 

and green lines representing the approximate locations of the ship tracks during seismic 
airgun operations from 23-30 June. The red line delineates the boundaries of the Gully 
Marine Protected Area. 
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Figure 51. Bottlenose whale click on left and sperm whale click on right showing the strong negative 

spike in the bottlenose whale click. 

 
The data were analysed for presence of bottlenose whale clicks using scripts produced in Matlab. The data 
were de-meaned to precisely centre them on zero amplitude. Each data file contained 1.6 s of strong noise 
at the end that was eliminated before further analyses. Other very noisy sections or even entire files were 
also removed by zeroing amplitude values after a visual scan of the data. Stronger clicks appeared to 
extend through about 35 data points (7 ms), so the data were first smoothed by averaging consecutive 15-
point (3-ms) windows. This resulted in single peaks for each click that were easier to detect than the 
multiple peaks in the original data. This procedure also averaged most of the sperm whale clicks to almost 
zero making them less likely to be wrongly detected as bottlenose whale clicks (Figure 52). To select the 
dominantly negative clicks, a threshold was chosen below the noise level. Points below this threshold of -
100 digitizing units were checked for positive points above +70 digitizing units amplitude within ±12 data 
points to rule out noise or sperm whale clicks that were not fully removed by averaging. Since the noise 
levels varied for each file, some lower amplitude clicks may have been missed. 
 

    
Figure 52. Bottlenose whale click on left and sperm whale click on right showing the strong negative 

spike in the bottlenose whale click. 

 
The number of clicks detected per minute during the seismic survey period and after the survey ceased 
were counted and compared. The average time intervals between clicks in click trains were also measured 
and compared during and after seismic operations. The intervals within click trains were identified by 
searching for intervals of less than 2 s in length after a visual scan of the data to determine the length of the 
majority of intervals. All intervals of less than 2 s were then averaged. A small proportion (< 4%) of the data 
was checked for robustness and presence of false positives in the results. 
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RESULTS AND DISCUSSION 

A 20-s sample of the original data containing 15 potential bottlenose whale clicks is shown in Figure 53. 
Two seismic shots are also visible at about 865 s and 876 s. The same data averaged in consecutive 15-
point windows is shown in Figure 54 with crosses marking the ten clicks automatically selected by the 
algorithm. The other five do not extend below the selected threshold for detection and are not included in 
further analyses. 
 

 
Figure 53. Sample of original data showing 15 possible bottlenose whale clicks with strong negative 

amplitude values. Two seismic airgun bursts are visible at 865 s and 876 s. 

 

 
Figure 54. Data shown in Figure 53 after averaging consecutive 15-point windows. The detected 

bottlenose whale clicks are marked with crosses. 

 
The bottlenose whale click detection algorithms described above were fairly successful in selecting 
stronger clicks presumed to be from bottlenose whales while avoiding false positives from noise or from 
clicks presumed generated by sperm whales. During seismic operations, the algorithm detected 57% of 
clicks visually identified while only 1% of the clicks detected could be considered false positives. After 
seismic operations ceased, 29% of visually identified clicks were detected with the algorithm and 25% of 
the randomly checked clicks were false positives. The high number of false positives here were due to a 
single 2-min section containing sperm whale clicks with strong negative components to their waveforms 
that were not eliminated through averaging the data. The lower percentage of automatic click detections 
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without the seismics is likely due to the fact that more clicks were visible in the absence of seismic noise in 
the background. The high threshold value used to avoid selection of noise as clicks resulted in fewer clicks 
being detected with the algorithm than were visually identifiable. In both situations, only louder clicks are 
detected and counted so there should not be a bias against detecting clicks in the absence of seismic 
noise. During seismic periods clicks may be masked by the noise that does not dissipate completely 
between airgun shots. The automatic detection allowed comparison between the two time periods, but was 
less useful for the analyses of the overall acoustic behaviour of bottlenose whales since many vocalizations 
were missed. 
 
A substantially larger number of clicks were detected during the first five hours of recordings (first nine files) 
28 June 15:00-20:00 UTC (12:00-17:00 ADT) than in the rest of the dataset (Figure 55). Bottlenose whales 
were sighted from the vessel Strait Signet in the vicinity of OBS #1 during this five-hour period. This time 
period was concurrent with the presence of seismic operations that had also been taking place over the five 
day period prior to the OBS recordings at Station #1. The broadband seismic airgun signals were visible 
and audible above the ambient noise in the waveform data throughout the survey period at regularly 
spaced intervals of about 11 seconds. There was also a slight increase in click numbers from 29 June 
08:30-11:00 UTC (05:30-08:00 ADT) when no seismic survey was taking place. The last five hours of data 
corresponded to the same time of day (12:00-17:00 ADT) as the first five hours of the dataset, but very few 
clicks were detected during this second afternoon time period. For the dataset analysed, there were 
14.0 ± 9.3 clicks/min (95% CI) overall during the seismic survey and 3.4 ± 2.4 clicks/min after the survey 
stopped. This difference is statistically significant (ANOVA, F1,57 = 5, P = 0.03), however very little insight can 
be drawn from this result. It should also be noted that the number of clicks detected during the second half 
of the seismic survey period was not greater than the number detected during the following period without 
seismic operations. The confidence interval is wide for both sections of data. The dataset was small, 
consisting of less than a single day of seismic operations after five days of operations had already taken 
place. The lack of data prior to the start of seismic operations makes conclusions about bottlenose whale 
behaviour difficult. There is no way to know if or how much the whales were vocalizing prior to the start of 
the seismic survey or during the unrecorded initial five days of the survey. All that can be said is that 
bottlenose whales were apparently present during the sixth day of seismic operations if indeed the clicks 
observed have been properly identified. The locations of the whales during the entire study were not known 
and could not be determined from the acoustic data available. 
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Figure 55. Clicks per minute detected using automated detection algorithms during the presence of a 

seismic airgun survey and after the survey ceased as a function of file number. The analysis 
period started at 12:00 ADT 28 June 2003 and ended at 17:41 ADT 29 June 2003. Each file 
consisted of 28 min of data with gaps of 1.4 min between files. No seismic operations 
occurred during approximately the recording period of file numbers 11-15. Files 13 and 59 
were too noisy to analyse. 
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The average measured click interval from clicks automatically detected during the seismic survey period 
was 0.6 ± 0.06 s. The click interval after the airgun survey stopped was 0.7 ± 0.08 s. The click interval did 
not change significantly during and post-seismic operations (Figure 56). Click intervals for bottlenose 
whales of 0.07 s for surface clicks and 0.4 s for deep or distant clicks have previously been reported in the 
literature (Hooker and Whitehead, 2002). The interval measured here was more consistent with the earlier 
reported deep or distant clicks, which seems not unreasonable considering the hydrophones were at the 
bottom of the water column. Our longer measured value may have resulted from the specific methodology 
employed. This was done in an automated way to save time, so some clicks were not detected, and all 
intervals of less than 2 s duration were included in the calculation. The click intervals were also analysed 
for the presence of possible surface clicks, but none were evident. 
 
Some data pre-processing was required to initially decide what threshold to use for selecting clicks and to 
eliminate particularly noisy sections. This process could be further automated with algorithms to estimate 
noise levels. 
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Figure 56. Mean click interval measured by looking for intervals of less than 2 s in length during the 

presence of a seismic airgun survey and after the survey ceased as a function of the file 
number. The analysis period started at 12:00 ADT 28 June 2003 and ended at 
17:53 ADT 29 June 2003. Each file consisted of 28 min of data with gaps of 1.4 min between 
files. No seismic operations occurred also during approximately the recording period of file 
numbers 11-15. Files 13 and 59 were too noisy to analyse. 

 
Although one of the ocean bottom seismometers was able to capture what appear to be bottlenose whale 
clicks, future instruments with a higher sampling frequency are recommended in order to permit analysis of 
the click data in spectral space. This would allow greater certainty in the identification of sounds as 
bottlenose whale clicks. The sampling frequency should be in excess of 40 kHz to properly capture sounds 
up to and above 20 kHz, the estimated peak frequency of the majority of bottlenose whale clicks (Hooker 
and Whitehead, 2002). It would also be useful to utilize more than one instrument to determine whale 
locations. Unfortunately, due to the failure of two instruments, it is not known if the whales left the Gully 
entirely or if they just moved to a different portion of the Gully. Knowledge of the locations of animals would 
have allowed estimation and comparison of the source levels of whale sounds made during and after 
seismic operations. Also, coincident visual sightings might have determined if the whales were still present 
but had stopped vocalizing. For future work, the sperm whales click data could also be analysed. 
 
Many questions remain. What was the vocalization behaviour prior to the commencement and during the 
first five days of the seismic survey? Did the whales leave the area or did they just stop calling? Did the 
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change in behaviour have anything to do with the seismic survey itself? Did vocalization rates increase 
again at a later time? What are normal vocalization rates for bottlenose whales at various times of day? 
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ABSTRACT 

Simard, Y., F. Samaran and N. Roy. 2005. Measurement of whale and seismic sounds in the Scotian Gully and 
adjacent canyons in July 2003. Pages 97-116, In, K. Lee, H. Bain, and G.V. Hurley, Eds. 2005. Acoustic Monitoring 
and Marine Mammal Surveys in The Gully and Outer Scotian Shelf before and during Active Seismic Programs. 
Environmental Studies Research Funds Report No. 151, 154 p + xx.  
 
This report analyzes data collected with two hydrophones at monitored target depths of 190 and 210 m (station depth 
permitting) during the COOGER cruise of the M/V Strait Signet to the Scotian Gully area in July 2003, while 3-D airgun 
seismic exploration were conducted by Marathon Canada Ltd aboard the M/V RamformViking, 30 to 150 km south-
west of the surveyed stations. The acoustic data were acquired over a 30-kHz frequency band, on 7-9 and 13-14 July 
at 13 stations in the Gully, 3 stations in Shortland canyon and 1 station in Haldimand canyon. The far field seismic 
sound was detected at all stations, except one. The sound pressure levels of the first second of the seismic sound 
(SPLRMS[1 s]) ranged from 103 to 135 dB re 1 µPa (91 to 31 km ranges). The corresponding sound exposure levels 
(SEL) integrated over the sound duration were 103 to 140 dB re 1 µPa. The duration of the seismic sound was longer 
than at the source, because of multipath reflections, and varied from less than 1 s to more than 5 s, with most energy 
concentrated in the first 1-3 s. Its spectral content decreased with range and was limited to frequencies lower than 
1500 Hz, with a maximum between ~ 30 to 400 Hz. At the closest stations (31-50 km), the seismic wave increased the 
pre-wave sound spectra by about 30 dB around the 200 Hz ±100 Hz band. These highest spectral levels slightly 
overlapped with published odontocete audiogram envelope in the 100-250 Hz band but were lower by up to 20 dB at 
higher frequencies. The pressure level of the seismic sound tended to decrease with range from the source, by about 
5 dB per 10 km, but showed significant spatial and temporal variability. 
 
Whale vocalizations were present at all stations. They include sperm whale clicks (1-15 kHz, 16/20 stations), northern 
bottlenose whale clicks (20-30 kHz, 13/20 stations), dolphin whistles (2-30 kHz, 17/20 stations), clicks from other 
odontocetes (possibly pilot whales, harbor porpoises, dolphins), other less frequent vocalizations and unidentified calls. 
Northern bottlenose whale clicking intensity matched the published local distribution of the species. These results 
indicate that the whales did not abandon the Gully area during the short observation period while the 3-D seismic 
exploration was carried out in the western part of the Marathon survey area, at ranges larger than 30 km. 

INTRODUCTION 

In Spring 2004 the DFO Centre for Offshore Oil and Gas Environmental Research (COOGER) initiated the 
Gully Seismic Research Program. This multidisciplinary research project was aimed at assessing the 
potential impacts of seismic exploration activities on marine mammal abundance, distribution and 
behaviour at the margin of the continental shelf on the east coast of Canada, especially within the Gully 
region and adjacent Shortland and Haldimand canyons (Figure 57). Two seismic programs were conducted 
in the region in June and July by Marathon Canada Ltd and EnCana Corp., using airgun arrays towed by 
the M/V Ramform Viking and Geco Triton, respectively. In July, the R/V Strait Signet concurrently collected 
information on the distribution and abundance of marine mammals, water mass structure from temperature 
and salinity profiles, and sound pressure levels in two target layers of 100 m (c.f. McQuinn and Carrier, 
2005) and 200 m with two different acoustic systems. Only the M/V Ramform Viking was operating during 
that period. This paper presents the results obtained from the deep recording system over a 30 kHz band, 
to estimate the received sound pressure levels of the airgun array seismic sound during the Marathon 
survey and assess the presence of whales from their vocalisations at a series of stations. 
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Figure 57. Map of the study area at the margin of the continental shelf off Nova Scotia, with the Gully 
and the two other canyons where the acoustic data were recorded. Tracks of the 
M/V Ramform Viking seismic source on 7-9 and 13-14 July 2003 (red lines). 

MATERIAL AND METHODS 

The acoustic recordings were made on 7-9 and 13-14 July 2003 on board of the R/V Strait Signet. Thirteen 
stations were surveyed in the Gully area, three in the Shortland Canyon and one in the Haldimand Canyon 
(Figure 58). The deep-water acoustic monitoring array was composed of two omnidirectional hydrophones 
HTI 96-MIN (max sensitivity from 0.004 to 30 kHz, with a flat response below 10 kHz and a -163 dB V/µPa 
receiving sensitivity (RS)), a 300 m shielded twisted pairs cable, a 120V AC electric winch, a signal 
conditioning box, and a data acquisition system (Figure 59). This latter was composed of an Interactive 
Innovation Chico-Plus card equipped with the Aix A/D DSP module, capable of sampling four 16-bit 
channels up to 2.5 MHz continuously and synchronously, with four separate A/D converters. The 
programmed sampling rate was 60 kHz, which represents a larger band (30 kHz) than the standard audio 
(22-24 kHz) to allow the coverage of the frequency band of northern bottlenose whale clicks, centred 
between 20 and 30 kHz (Hooker and Whitehead, 2002). The two hydrophones were separated by about 
20 m (Figure 59). A small weight was attached to the deeper one. A Seabird Electronics SBE-19 CTD was 
inserted half way between the hydrophones to monitor the temperature, salinity and depth during the 
recordings. The cable was tied with bungee cords to two surface buoys to reduce the wave effect on the 
measurements. From the winch, the cable was connected to the signal conditioning box with a ~15 m deck 
cable and then to the Chico-Plus-Aix data acquisition card inserted in the PC. The system was powered 
with two 12 V batteries and a DC to 120 V AC converter, for complete isolation from the ship power to 
minimise electrical interference and to allow a shut down of the ship generator during measurements. 
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Water depth permitting, measurements at stations were made at a depth of 200 m (e.g. Figure 60). Mid 
water column data were collected for shallow stations (Table). The ship motor and generator were turned 
off during the period of data acquisition, which lasted 25 to 55 min. During that time the cable feather and 
ship drift changed the sampling depth by up to 20% (e.g. Figure 60, Figure 61). The system was calibrated 
at the Maurice Lamontagne Institute acoustic calibration facility for the 2 to 30 kHz band. The receiving 
sensitivity (RS) measured at 2 kHz, which was less than 0.5 dB from manufacturer's specifications, was 
extrapolated to the lower frequencies, from the hydrophone's very flat response specifications. The data 
acquisition interface had a constant frequency response. Before deploying the hydrophones at each 
station, a CTD profile with another instrument was performed over the whole water column or down to a 
depth of about 550 m. The CTDs were calibrated before the cruise at the CTD maintenance facility of the 
Maurice Lamontagne Institute. 
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Figure 58. Stations sampled with the deep recording system during the July 2004 survey of the 
R/V Strait Signet. Station names and sounded or charted (deep stations) bottom depths 
(above dot). Large dots correspond to stations visited twice. 

 
A trained observer visually and aurally inspected all recordings to detect the presence of whale 
vocalisations and the seismic wave on spectrograms. Due to a break in a connection of the deep 
hydrophone (b) on 9 July, a few bad recordings were excluded from the data analysis. For northern 
bottlenose whale, a relative index of click occurrence at the stations was computed. The number of clicks 
per minute for both hydrophones were scaled as follows: 0 for absence of clicks, 1 for 1-10 clicks, 2 for 10-
100 clicks and 3 for > 100 clicks. The mean of this relative occurrence index was computed for each 
station. 
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Figure 59. Deployment of the hydrophones and CTD during the measurements at the stations. 

 

 
 

Figure 60. Example of the hydrophone recording depths at a station from CTD data. 
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Figure 61. Example of depth interval sampled by the two hydrophones at a station, with the 
temperature, salinity and sound speed profiles. 
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Figure 62. Spectrogram and amplitude of three 30-1500 Hz bandpass typical seismic sounds and the 1-
s estimation windows. 
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Table 9. Sampling coordinates. 

 
CTD depth (m) Station 

name 
Lat. N Long. W Depth 

(m) 
Time 
(ADT) 

Cable in 
water 
(m) min. max mean SD 

Recording 
time 

(min:ss) 

No. of 
files 

Notes 

a2_1st 44.1402 59.1545 350 2003/07/14  12h46 250 109.9 131.8 121.4 7.2 24:56 5  

a2_2nd 44.1402 59.1545 265 2003/07/14  18h56 250 147.4 209.1 174.0 19.2 54:16 9 raised then 
lowered 

b3 44.0889 58.9715 215 2003/07/14  10h41 150 97.4 127.7 113.3 9.2 30:10 5 strumming  
c3 43.9974 58.9156 193 2003/07/14  08h57 150 114.7 130.3 123.2 4.1 30:11 5  
c4 44.0375 58.7891 107 2003/07/14  07h15 70 54.1 65.4 61.7 3.6 30:13 5 near another cable 
d2 43.8656 58.9861 550 2003/07/13  12h00 250 188.0 206.5 196.5 4.4 36:07 6  
d3 43.9059 58.8599 250 2003/07/13  19h08 250 121.3 161.8 135.6 9.5 30:06 5  
d4 43.9460 58.7336 188 2003/07/13  20h45 150 75.1 112.2 92.4 9.4 30:04 5  
e3_1st 43.8143 58.8044 1100 2003/07/07  19h11 250 5.0 19.7 17.7 1.8 30:31 5 entangled with 

another cable 
e3_2nd 43.8143 58.8044 1100 2003/07/13  17h20 250 195.5 208.3 200.6 3.3 30:07 5  
e4 43.8545 58.6782 1220 2003/07/08  07h50 250 187.4 205.5 197.6 5.9 30:13 5  
f1 43.6418 59.0002 1250 2003/07/08  16h28 250 174.4 204.5 188.4 10.6 42:03 7  
f2_1st 43.6823 58.8747 1300 2003/07/08  14h02 250 162.7 193.3 174.0 8.5 30:10 5 hydrophone b 

wrapped on CTD 
f2_2nd 43.6823 58.8747 1300 2003/07/13  14h58 250 130.9 174.5 144.7 10.5 30:07 5 idem 
f3 43.7227 58.7490 2500 2003/07/08  11h53 250 - - - - 42:15 7 recordings' CTD 

series missing  
f4 43.7630 58.6231 2000 2003/07/08  09h58 250 195.2 209.1 203.1 4.0 30:08 5  
Sa2 44.0299 58.4309 350 2003/07/09  09h40 250 100.9 108.6 103.9 2.1 30:15 5  
Se3 44.2448 57.9436 950 2003/07/09  20h24 250 210.1 217.2 213.1 1.9 30:15 5 strumming 
Sb2 44.0582 58.2962 950 2003/07/09  14h44 250 176.3 206.9 191.5 10.6 30:14 5 idem, water into 

cable envelope 
S-head 44.1755 58.3916 900 2003/07/09  12h14 250 153.9 176.0 163.1 5.9 30:12 5  
Total          10:52 109  
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Figure 63. Map of the average depth of the acoustic recordings at the stations, from the CTD placed 
half way between the two hydrophones. 

 
Sound pressure levels were computed using Sound Technology Inc. SpectraLab (Ver. 4.32.17c.). The 
power spectral density (PSD, normalised to an analysis band of 1 Hz by subtracting 10 log10 (FFT frame 
in s) to make it independent of FFT size and sampling rate) for one typical seismic sound per station was 
computed for the first second of the sound, in 1-Hz and standard third octave bands, over a 1.5 kHz 
frequency range. It was also computed for the second preceding the sound, to verify the change in sound 
levels due to the seismic wave (Figure 62). The sound pressure level (SPLRMS), sound exposure level 
(SEL) (c.f. Austin and Carr, 2005 for definitions) were measured on 30 to 1500-Hz bandpass filtered data, 
the main energy band of the seismic pulse at long ranges (Austin and Carr, 2005; e.g. Figure 72), to 
minimise contamination from lower and higher frequency noise from other origins (waves, heave effects on 
measurement, strong whale clicks). The filter lower bound was raised to 50 Hz for 3 stations contaminated 
by strumming noise. The SPLRMS was computed for one 6-min file for each hydrophone per station: a) over 
the first second of the seismic sound (SPLRMS[1s] = SEL[1s]), which comprises the strongest first paths, and 
b) over the duration of all significant energy of the sound including subsequent paths, which was often ~1-
3 s but occasionally took up to 5-6  s. Three of the stations were visited twice; once without the seismic 
airguns operating and once with them in operation. 
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RESULTS 

The average depth variation of the hydrophones during the recording with respect to targeted depths at the 
stations was 25 m (e.g., Figure 61). The mean recording depths and standard deviations are mapped in 
Figure 63. In general the recordings were made at the top of a deep layer located below a cold subsurface 
intermediate layer forming an upper sound channel around 50-100 m (e.g. Figure 61), except for stations 
c4 and S-head where the hydrophones were in the cold intermediate layer. 
 
Except for stations d3 and Sb2, the seismic sound was detected at all stations, the farthest being 148 km 
from the source. The recordings at station Sb2 had low-frequency noise, attributed to strumming and/or 
heave movements, which hindered the clear identification of the seismic sound. The seismic sound was 
limited to a band of 1.5 kHz, and essentially concentrated between 30 and 700 Hz, with a maximum below 
200 Hz (Figure 64). It changed the preceding noise background in this band by up to ~40 dB re 1 µPa2 / Hz 
at the closest stations, 31 km from the source. Stronger attenuation in some frequency bands was apparent 
at several stations, as some frequencies were poorly represented compared to other stations (e.g. stations 
c3, d2, e3). The maps for the third-octave level bands centred at 63, 125 and 250 Hz (Figure 65) and their 
plots as function of distance from the source (Figure 67) show that the levels in these bands reached 124, 
131 and 120 dB re 1 µPa at the closest station (f1). Though the closest stations tended to have higher 
levels, the spatial variability was high, as for the integrated energy over the first second or the sound 
duration (Figure 66). A maximum SPLRMS[1 s] of 135 dB re 1 µPa in the 30-1500 Hz band was recorded at 
station f1 and f2 for the first second. Corresponding maximum SPLRMS and SEL were 133 and 141 dB re 1 
µPa. Except for two few stations (for which flow noise is the likely cause), the sound pressure levels were 
similar on the two hydrophones, with a possible slightly lower level on the deeper hydrophone (Figure 67). 
 
The most frequent marine mammal vocalisations noted in the recordings were mid- to high-frequency 
whistles and clicks. In the absence of visual ground-truth --all acoustic recordings having been made under 
foggy conditions-- these were tentatively attributed to dolphins, sperm whales and northern bottlenose 
whales on the basis of the vocalisations of these species published in the literature and observations on 
previous days (see Gosselin and Lawson, 2005). Other unidentified short-interval clicks at frequencies 
lower than ~5 kHz, possibly from pilot whales, harbour porpoises or dolphins, were also detected. Low-
frequency baleen whales were very rare, and included notably a distant typical 20-Hz pulse of fin whale 
repeated at ~10 s intervals at stations f1 and f3. Figure 68a-b shows typical sperm whale clicks, repeated 
every 0.7 s in this case, and presenting several multipath echoes. Such clicks were common (16 out of 20 
station-samplings) and detected at all stations except three at the entrance of the Gully (Figure 68c). Other 
clicks at irregular but shorter intervals, between 20 and 30 kHz (Figure 69a-d), were similar to clicks 
reported by Hooker and Whitehead (2002) for northern bottlenose whale. In this same high-frequency 
band, series of clicks with a high repetition rate, often called "ratchets" (Figure 69e), were observed on 
occasions. These high-frequency clicks attributed to northern bottlenose whales were observed at 11 of the 
17 stations (13/20 station samplings) (Figure 70). Their occurrence was higher on the eastern side of the 
Gully mouth and the head of the Gully and the other canyons. They were absent from the 3 shallow 
stations on the shelf and the 3 stations south-west of the Gully mouth. High-frequency whistles, including 
components higher than the audio band of 22 or 24 kHz (Figure 71a-b), were observed at all stations 
except one (17/20 station samplings) (Figure 71). 
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Figure 64. PSD of the first second of typical seismic sounds recorded by the upper hydrophone at 

selected stations along the Gully axis and along the shelf edge. (Note that the units for the 
third-octave levels are not per Hz.) 
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Figure 65. Maps of third octave levels of the first second of the seismic sound for three frequency 
bands. Hydrophone b was unavailable for stations d2, Sb2 and S-head. Source locations 
during the recording days are indicated in red on the central map. 
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Figure 66. Maps of the median sound pressure level (SPLRMS) and sound exposure level (SEL) for the 
first second and for the significant duration of the seismic sound. Hydrophone b was 
unavailable for stations d2. Source locations during the recording days are indicated in red 
on the central map. 
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Figure 67. Levels of the seismic sound as function of distance from the airgun array. Left column: third-
octave bands of the sound peak for the first second. Right column: box plots of the sound 
pressure level (SPLRMS) for the 30-1500 Hz band for the first second (top panel) and for the 
sound duration (middle panel), and of the sound exposure level (SEL) integrated over the 
sound duration (bottom panel); the box plot vertical line is the range, the red box is the first 
and third quartiles, the horizontal bar is the median for the upper hydrophone and the blue x 
is the median for the lower hydrophone. 
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Figure 68. Example of time-series and spectrogram of sperm whale clicks unfiltered (a) and 4-21 kHz 
band-pass filtered (b). Note the 30-kHz frequency band, 25% larger than the standard audio 
band limits of 22 and 24 kHz (red arrows in (a)). Map of presence(1)/absence(0) at the 
stations (c). 
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Figure 69. Example of time-series and spectrogram of high-frequency clicks attributed to northern 
bottlenose whales unfiltered (a) and 20-kHz high-pass filtered (b-d) and gradually zoomed for 
the shaded pink windows from a to d. Superimposed 13-kHz high-pass filtered time-series 
and spectrograms for both hydrophones showing a "ratchet" click sequence (e). Note the 
different time of arrivals at the two hydrophones. 
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Figure 70. Map of relative index of occurrence of high-frequency click detections attributed to northern 

bottlenose whales (see method for index details). 
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Figure 71. Example of time-series and spectrogram of high-frequency whistles unfiltered (a) and 5 kHz 
high-pass filtered (b). Map of their presence(1)/absence(0) at the stations (c). 

 



GULLY SEISMIC RESEARCH PROGRAM SIMARD, SAMARAN AND ROY 

 113

DISCUSSION 

This limited acoustic data set provides an estimate of the levels and frequency content of the airgun array 
seismic sound at depth in the Gully area during a part of the Marathon Canada Ltd survey in July 2003. 
The background noise in the 125 to 1000 Hz band immediately before the arrival of the seismic pulses was 
1-3 dB lower than that reported by Desharnais and Collison (2001) at 30 m in the area of their Gully S 
station (from a third-octave level computation of noise background preceding the seismic sound at 
station e3 (Figure 64, NOT SHOWN). Our measurements were 5 to 20 dB higher below 125 Hz. This may 
originate from differences in shipping and wind intensity (c.f. Figure 72), measurement platforms and 
equipment. However, persistence of low-frequency seismic sound for more than the inter-pulse period may 
also be partly involved. Except for these low frequencies, the background noise levels were comparable to 
that observed in ocean with usual traffic noise (Figure 72). The 3-D seismic exploration introduced a low-
frequency sound above this background that was detected up to 150 km from the source. The measured 
far-field (30-150 km) seismic sound lasted much longer than the pulse emitted by the airguns (0.1 s, Austin 
and Carr, 2005) because of several multipath arrivals that merged together (c.f. Richardson et al., 1995). 
Though most of the energy of these arrivals was confined to the first 3 s or less, the signal was 
distinguishable for at least 5.5 s at the closest stations, which contributed to increase the SEL. The 
measured seismic sound levels are in close agreement with those measured at comparable ranges and 
depths by Austin and Carr (2005). Although the seismic sound SPLRMS, ranging from 103 to 
135 dB re 1 µPa in the surveyed area, depths and ranges, tended to decrease with range by ~5 dB per 10 
km, there was significant spatio-temporal variability (~20 dB), in response to propagation effects due to the 
topography and water mass structures and possible variations in the source levels. At ranges > 100 km, the 
seismic sound level almost reached the background noise level. The filter action of the propagation path is 
also likely responsible for the observed stronger attenuation in some frequency bands and for the 
narrowing of the spectral signature with range. The maximum spectral levels observed at the closest 
station from the airguns during the first second of the seismic sound overlap with the NRC (2004) 
odontocetes's audiogram envelope in the 100-200 Hz band (Figure 72), but is 20 dB below at 1000 Hz. 
 
The biological sounds in the surveyed area were mainly odontocete calls and clicks. They were abundant 
and present at the large majority of stations, which reveals a significant degree of odontocete occupancy 
and activity in the survey area during the seismic exploration. The high-frequency clicks we attributed to 
northern bottlenose whales based on Hooker and Whitehead's (2002) description were similar in duration, 
shape and frequency content to those recorded from sighted whales a few days earlier by JASCO 
Research Ltd. (from 16 bit recordings on a 50-kHz band provided by JASCO). We are therefore confident 
that they were emitted by northern bottlenose whale individuals that were at close ranges (< 2 km) from the 
stations. They were present at all deep stations, except the three off-shelf stations south-west of the Gully 
mouth, which include the closest (< 52 km) two stations from the airguns. Their absence at these locations 
agrees with Hooker et al.'s (2002) sighting and effort map for the Gully, which shows that northern 
bottlenose whales seldom frequent this part of the survey area. High-frequency whistles, likely from 
dolphins and typical sperm whale clicks were recorded almost everywhere. The multipath nature of these 
sperm whale clicks is indicative that the vocalising animals were at close range (< 2-3 km) from the station 
(see Thode, 2004). The time difference of direct and reflected arrivals at the two hydrophones could allow 
the estimation of whale's depth (Thode et al., 2002; Laplanche et al., 2004; Thode, 2004) to determine the 
main depth layers used by the animals and better assess the exposure levels. This possibility is less likely 
for northern bottlenose whale clicks because they have fewer reflected paths, but the combination of the 
multipath information from the two hydrophones of known depths could allow some estimation. The 
identification of source of the other unidentified clicks would require additional measurements, ground-
truthed with sightings. 
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Figure 72. PSD of the seismic sound first second recorded at 31 km from the airguns superimposed on 

ocean noise reference curves and odontocetes' audiograms envelope from NRC (2003). 
Reprinted with permission from the National Academy of Sciences, National Academies 
Press, Washington, D.C. 

 



GULLY SEISMIC RESEARCH PROGRAM SIMARD, SAMARAN AND ROY 

 115

ACKNOWLEDGEMENTS 

We thank Dr. Kenneth Lee from the Centre for Offshore Oil and Gas Environmental Research (CCOGER) 
for initiating and co-ordinating this work. We thank all persons who participated to the preparation and 
realisation of the data collection at sea, namely Jean-François Gosselin, the mission chief, Richard Lepage, 
Charles Pelletier, Yves Samson and Sylvain Chartrand for the preparation of the equipment; Jack Lawson, 
Samuel Lambert-Milot, Patrick Abgrall, and the crew of the M/V Strait Signet for the data collection at sea. 
Yves Samson and Sylvain Chartrand contributed to the calibration of the acoustic recording system. 
Catherine Bédard and Delphine Benoit contributed to the analysis of the northern bottlenose clicks. We 
thank Scott Carr, from JASCO Research Ltd, for providing high-frequency recordings of northern 
bottlenose whale clicks to compare with ours. 

REFERENCES 

Austin, M.E. and S.A. Carr. 2005. Summary report on acoustic monitoring of Marathon Canada Petroleum 
ULC 2003 Cortland/Empire 3-D seismic program. Pages 15-28, this volume. 

Desharnais, F., and N.E.B. Collison.  2001. Background noise in the area of the Gully, Laurentian Channel 
and Sable Bank.  DREA ECR 2001-028 rep. 36 pp. 

Gosselin, J-F. and J.W. Lawson. 2005. Distribution and abundance indices of marine mammals in the Gully 
and two adjacent canyons of the Scotian Shelf before and during nearby hydrocarbon seismic 
exploration programs in April and July, 2003. Pages 117-138, this volume. 

Hooker, S.K, and H. Whitehead.  2002. Click characteristics of northern bottlenose whales (Hyperoodon 
ampullatus).  Mar. Mam. Sci. 18: 69-80. 

Hooker, S.K., H. Whitehead, and S. Gowans.  2002. Ecosystem consideration in conservation planning: 
energy demand of foraging bopttlenose whales (Hyperoodon ampullatus) in a marine protected area.  
Biological Conservation 104: 51-58. 

Laplanche, L., O. Adam and J.-F. Motsch.  2004. Accuracy in the localization of sperm whales resident in 
the strait of Gibraltar using one hydrophone.  Canadian Acoustics 32(2) 161-166. 

McQuinn, I.H. and D. Carrier. 2005. Far-field measurements of seismic airgun array pulses in the Nova 
Scotia Gully Marine Protected Area. Pages 57-74, this volume. 

NRC.  2003. Ocean noise and marine mammals.  The National Academies Press, Washington D.C., USA. 
192 p. 

Richardson, W.J., C.R. Greene, C.I. Malme and D.H. Thomson.  1995.  Marine mammals and noise. 
Academic Press, N.Y., USA. 576 p. 

Thode, A.  2004. Tracking sperm whale (Physeter macrocephalus) dive profiles using a towed passive 
acoustic array.  J. Acoust. Soc. Am. 116: 245-253. 

Thode, A., D.K. Mellinger, S. Stienessen, A. Martinezand and K. Mullin.  2002. Depth-dependent acoustic 
features of diving sperm whales (Physeter macrocephalus) in the Gulf of Mexico.  J. Acoust. Soc. Am. 
112: 308-321. 



GULLY SEISMIC RESEARCH PROGRAM SIMARD, SAMARAN AND ROY 

 116



GULLY SEISMIC RESEARCH PROGRAM GOSSELIN AND LAWSON 

 117

Distribution and abundance indices of marine mammals in the Gully 
and two adjacent canyons of the Scotian Shelf before and during 
nearby hydrocarbon seismic exploration programs in April and July, 
2003. 
 
Jean-Francois Gosselin1 and Jack Lawson2 

1 Fisheries and Oceans Canada 
  Maurice Lamontagne Institute, 850 route de la Mer, PO Box 1000, Mont-Joli, Quebec, G5H 3Z4 
2 Fisheries and Oceans Canada 
  Northwest Atlantic Fisheries Centre, 80 East White Hills Road, St. John’s, Newfoundland and Labrador, 
  A1C 5X1 

ABSTRACT 

Gosselin, J-F. and J.W. Lawson.  2005. Distribution and abundance indices of marine mammals in the Gully and two 
adjacent canyons of the Scotian Shelf before and during nearby hydrocarbon seismic exploration programs in April and 
July, 2003. Pages 117-138, In, K. Lee, H. Bain, and G.V. Hurley, Eds. 2005. Acoustic Monitoring and Marine Mammal 
Surveys in The Gully and Outer Scotian Shelf before and during Active Seismic Programs. Environmental Studies 
Research Funds Report No. 151, 154 p + xx.  
 
The Sable Island Gully is a submarine canyon on the eastern Scotian Shelf that provides habitat to a wide diversity of 
species including the endangered northern bottlenose whale (Hyperoodon ampullatus). Seismic surveys for 
hydrocarbons were conducted in waters adjacent to the Gully in the spring and summer of 2003. An effort to evaluate 
marine mammal species composition, distribution and abundance within the Gully prior to, and during, these seismic 
surveys was coordinated by the Centre for Offshore Oil and Gas Environmental Research (COOGER). Vessel-based 
line transect surveys were conducted in the Gully over areas of 1565 km2 and 2218 km2 before and during seismic 
operations and over an area of 1851 km2 covering two adjacent marine canyons only before seismic activities. Visual 
detections were accomplished by a team of two observers and a recorder from a location 7 m above the sea aboard a 
research vessel, 37 m in length, following a saw-tooth transect design at 18.5 km/h. In the Gully, 148 km were 
surveyed on 30 April prior to seismic data acquisition, and a total of 395 km were surveyed on 8, 10 and 11 July while 
seismic operations were underway. In the Shortland and Haldimand Canyons, 175 km of lines were surveyed on 1 
May. Seven species of marine mammals in 45 groups (84 individuals) were identified in both areas in spring, with 
northern bottlenose whale being the most abundant of detected species with three groups (13 individuals) in the Gully 
and one group (5 individuals) in Shortland Canyon. In July, 11 species in 207 groups (563 individuals) were identified in 
the Gully, where northern bottlenose whales (eight groups, 35 individuals) were outnumbered by common dolphins 
(Delphinus delphis), pilot whales (Globicephala sp.) and grey seals (Halichoerus grypus). Four species of large whales 
were identified during the surveys, with fin (Balaenoptera physalus) and sperm whales (Physeter macrocephalus) 
detected in both spring and summer and blue (Balaenoptera musculus) and humpback whales (Megaptera 
novaeangliae) detected only in summer. Estimated abundance, not corrected for animals missed on the track-line (i.e. 
g(0)=1), of northern bottlenose whales in the Gully were 44 (95%CI: 19–105) in April and 63 (95% CI: 20–230) in July. 
Fin, humpback, sperm and blue whales, combined into a large whale category for the Gully, were estimated to number 
89 (95% CI: 31-254) in April and 114 (95% CI: 61-214) in July. Abundance in the Gully of common, Atlantic white-sided 
(Lagenorhynchus acutus), bottlenose dolphins (Tursiops truncatus) and harbour porpoises (Phocoena phocoena), 
combined as one group, was estimated at 121 (95% CI: 21–686) in April and 1763 (95% CI: 849-3659) in July. 
Changes in composition, distribution and abundance of marine mammal species between the spring and the summer 
surveys most likely represent seasonal variation rather than an effect of seismic activity. Since we had to use a uniform 
model for density estimation of northern bottlenose whales, and did not correct for sighting availability and detection on 
the track-line for any species, the densities and abundances presented here are likely underestimated. 
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RÉSUMÉ 

Gosselin, J-F. et J.W. Lawson.  2005. Distribution et abondance indices des mammifères marins dans le 
Goulet et deux canyons voisins du plateau néo-écossais en avril et juillet 2003. Pages 117-138, In, K. Lee, 
H. Bain, and G.V. Hurley, Eds. 2005. Acoustic Monitoring and Marine Mammal Surveys in The Gully and Outer 
Scotian Shelf before and during Active Seismic Programs. Environmental Studies Research Funds Report No. 151, 
154 p + xx.  
 
Le Gully de l’Île de Sable est un canyon sous-marin de l’est du plateau néo-écossais qui procure un habitat pour une 
large diversité d’espèces dont la baleine à bec commune (Hyperoodon ampullatus) qui est en danger de disparition. 
Des relevés sismiques pour des hydrocarbures ont été réalisés dans les eaux adjacentes au Goulet au printemps et 
à l’été 2003. Un effort pour estimer la composition, la distribution et l’abondance des espèces présentes dans le 
Goulet avant et pendant ces relevés sismiques a été coordonné par le Centre de Recherche Environnementale sur le 
Pétrole et le Gaz Extracôtiers (CREPGE). Des relevés en ligne à bord d’un bateau ont été effectués dans le Goulet 
sur des zones de 1565 km2 et 2218 km2 avant et pendant les relevés sismiques et sur une zone de 1851 km2 
recouvrant deux canyons sous-marins voisins seulement avant les activités sismiques. Les détections visuelles 
étaient assurées par une équipe de deux observateurs et d’un enregistreur d’une position à 7 m au-dessus de la mer, 
sur un bateau de 37 m suivant des transects en dents de scie à une vitesse de 18.5 km/h. Dans le Goulet, 148 km de 
transect ont été couverts le 30 avril avant les relevés sismiques, et un total de 395 km ont été couverts les 8, 10 et 
11 juillet pendant les relevés sismiques. Dans les canyons Shortland et Haldimand, 175 km de transect ont été 
couverts le 1 mai. Sept espèces de mammifères marins en 45 groupes (84 individus) ont été identifiées dans 
l’ensemble des régions au printemps, dont des baleines à bec communes qui représentaient la plus abondante des 
ces espèces avec 3 groupes (13 individus) dans le Goulet et un groupe (5 individus) dans le canyon Shortland. En 
juillet, 11 espèces en 207 groupes (563 individus) ont été identifiés dans le Goulet, où les baleines à bec communes 
étaient dépassées en nombre par les dauphins communs (Delphinus delphis), les globicéphales (Globicephala sp.), 
et les phoques gris (Halicheorus grypus). Quatres espèces de grandes baleines ont été identifiées pendant les 
relevés, soit le rorqual commun (Balaenoptera physalus) et le cachalot (Physeter macrocephalus) observés au 
printemps et en été, ainsi que le rorqual bleu (Balaenoptera musculus) et le rorqual à bosse (Megaptera 
novaeangliae) observés seulement en été. Les estimations d’abondance non-corrigées pour les animaux manqués 
sur la ligne (i.e. g(0)=1) de baleines à bec commune dans le Goulet étaient de 44 (IC 95% : 19-105) en avril et de 63 
(IC 95% : 20-230) en juillet. Les rorquals communs, rorquals à bosse, les cachalots et les rorquals bleus, regroupés 
comme grandes baleines, furent estimés à 89 (I.C. 95% : 31-254) en avril et à 114 (I.C. 95% : 61-214) en juillet dans 
le Goulet. L’abondance dans le Goulet des dauphins communs, à flancs blancs de l’Atlantique (Lagenorhychus 
acutus), grands dauphins (Tursiops truncatus) et les marsouins communs (Phocoena phocoena), considérés comme 
un groupe, était de 121 (I.C. 95% : 21-686) en avril et de 1763 (I.C. 95% : 849-3659) en juillet. Les changements de 
la composition, de la distribution et de l’abondance des espèces de mammifères marins entre les relevés de 
printemps et d’été représentent vraisemblablement des changements saisonniers plutôt qu’un effet de l’activité 
sismique. Comme nous avons utilisé un modèle uniforme pour l’estimation de densité des baleines à bec communes, 
et que nous n’avons utilisé aucun facteur de correction pour la disponibilité et la détection sur la ligne pour aucune 
des espèces, les densités et abondances présentées dans ce document sont probablement des sous-estimations.  

INTRODUCTION 

The Gully has been proposed as a Marine Protected Area because of its species complement, particularly 
members of the endangered Scotian Shelf population of northern bottlenose whales (hereafter referred to 
as NBW). From photo-identification work conducted in summer months from 1988 to 1999, the NBW 
population frequenting the Gully was estimated to number 133 animals (95% CI: 111–166), with 
approximately 34 % of this population being present in the Gully at any given time (Hooker et al., 2002). 
 
The offshore seismic exploration programmes proposed to occur in the spring and summer of 2003 within 
10 km of recognised NBW habitat in the Gully, Shortland and Haldimand Canyons (Gowans et al., 2000; 
Whitehead et al., 1997; Wimmer, 2003) elicited concerns about the potential impacts of these activities on 
this endangered species and other marine mammals present in these canyon structures. Two 
programmes of seismic exploration for hydrocarbon reserves were conducted in areas adjacent to the 
three canyons in summer 2003. EnCana Corporation (vessel: Geco Triton, Western Geco) conducted a 
3-D seismic survey in a 1734 km2 area on the shelf slope about 10 km to the east of the center of 
Haldimand Canyon from 3 May to 28 June 2003. Marathon Canada Ltd (vessel: Ramform Viking, 
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Petroleum Geo-Services) conducted a 3-D seismic survey in a 2160 km2 area adjacent (0.8 km away) to 
the southwest limits of the Gully marine protected area from 20 June to 15 October 2003. Airgun sounds 
can propagate horizontally, and the size of the area thus ensonified around the seismic array depends on 
the physical characteristics of the sound source (e.g. size and configuration of array), and the physical 
characteristics of the environment (e.g. water density, bathymetric features, bottom composition). To 
evaluate potential effects of seismic surveys on marine mammals in the Gully, the first step is to collect 
baseline and post-exposure information on species composition, distribution and vertical location in the 
water column. When combined with in situ measurements of sound levels and sound propagation models, 
the levels of seismic sound to which individuals of different species will be exposed can be estimated. 
Further, it was assumed that if changes in the abundance or distribution of marine mammals in the Gully 
were detected that exceeded survey estimate variation or expected seasonal variation, these changes 
might be attributable to exposure to seismic sounds. 
 
Fully evaluating the effects of seismic exploration on marine mammals requires an extensive research 
programme that involves collection of information on the species composition of the area, the distribution 
and activity of animals and their prey (possibly using instrumented study animals), and knowledge of the 
behavioural and physiological effects of sound levels to which the study animals are exposed (e.g. Croll et 
al., 2001). During spring and summer 2003, a pilot study was initiated to (1) obtain baseline information 
on the species composition, abundance and distribution of marine mammals in the Gully and adjacent 
canyons, and (2) to estimate the ambient and seismic-related sound levels within the Gully prior to and 
during the seismic exploration programme. This project was part of a larger programme coordinated by 
COOGER that also included projects on near and far field sound level measurements, marine mammal 
vocalisation analyses, marine mammal observations from seismic survey vessels (Austin and Carr, 2005; 
Cochrane, 2005; Laurinolli and Cochrane, 2005; McQuinn and Carrier, 2005; Moulton and Miller, 2005; 
Potter et al., 2005; Simard et al., 2005; Vagle et al., 2005). This paper reports information on distribution, 
abundance and species composition of the marine mammal fauna in the Gully and in two adjacent 
canyons (Shortland and Haldimand). 

METHODS 

SURVEY DESIGN 

Distribution and abundance of marine mammals within the Gully, Haldimand and Shortland Canyons were 
estimated using data collected during ship-based visual line-transect surveys conducted prior to (27 April 
to 2 May 2003) and during (4 to 16 July 2003) seismic exploration conducted in adjacent areas of the 
Scotian Shelf. The surveys were conducted from a 37 m long vessel, the Strait Signet (Superport Marine, 
Port Hawkesbury, Nova Scotia), during missions where the primary goal was to collect acoustic 
recordings of seismic sounds and marine mammal vocalisations (re. McQuinn and Carrier, 2005; Simard 
et al., 2005). 
 
The survey design was planned to sample two areas of 1851 km2 (55.6 km ×  33.3 km). The first area was 
centered on the Gully and covered the region considered to be the most important for NBWs. The second 
area covered both Shortland and Haldimand Canyons. The transects covered both areas with five lines in 
a saw-tooth design for a total of 175 km (see Appendix 1 for details). To reduce the problem of over-
sampling in corners and dependence between adjacent lines in such a saw-tooth design, the lines in 
Gully were placed so that each covered most of the range of bathymetric gradient, and were centered on 
(with both ends extending outside) the area recognised as preferred NBW habitat. The lines in Shortland 
and Haldimand Canyons area were centered on the 1000 m isobath which corresponded to the steep 
slope canyon features and roughly the preferred depth range for NBWs in the Gully (i.e., 1000 m to 
1500 m, Hooker et al., 2002). The survey speed was 18.5 km/h so that a set of five lines could be 
surveyed during daylight hours in one day. 
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OBSERVATION PROTOCOL 

A team of three experienced observers moved every half hour during the survey through two observer 
and one recorder stations. The observation platform was on top of the wheelhouse, 7 m above sea level 
(observer eye height approx. 8.7 m), and sightability was 360° around the vessel for both observer 
stations combined. Scanning was primarily done by naked eye in a 180° arc in front of the vessel, with the 
port and starboard observers searching 100° sectors which overlapped 20° in front of the vessel. All 
observers had previous experience with marine mammal surveys and received additional training on 
sampling protocol and species identification prior to the survey. 
 
Vessel position, weather conditions, and sighting information were recorded on a palm computer (Allegro 
Field PC, Juniper Systems, Logan, Utah) synchronised with GPS time and positions recorded every 
30 sec to mapping software (Fugawi, Toronto, Ontario) during the spring mission. In July, all data were 
recorded using a dedicated survey programme (VOR, National Marine Fisheries Service, Woods Hole, 
Mass.) on a laptop linked to a GPS (Garmin). Weather conditions were recorded every half hour or before 
when changes in conditions noticeably affected visibility. Recorded weather parameters included: sea 
state (Beaufort scale), wave and swell height and direction, cloud cover in eighths, the relative bearing of 
glare reflection, angle of sighting affected, intensity of reflection, the presence of rain or fog, and distance 
of visibility (NM). Radial distance, relative bearing from the track-line, group size, and species were 
recorded for each sighting. Radial distance was estimated using one of three methods, here in preferred 
order: (1) 7 ×  50 binoculars equipped with reticules, (2) measurement of the angle below the horizontal 
using an inclinometer, or (3) estimated by eye for small and fast-swimming animals within 100 m of the 
vessel. The inclinometer was used when sightings were too close to the boat to have the horizon and the 
sighting in the field of view of the 7x50 binoculars. Estimated measurements were used when animals 
close to the boat broke the surface too rapidly to allow the use of the two measuring instruments. Reticule 
or inclinometer angles were converted to distance using formulae considering the curvature of the Earth 
(Lerczak and Hobbs, 1998). Perpendicular distance from the track-line was then calculated as the radial 
distance multiplied by the sine of relative bearing of sighting measured using a pelorus (i.e. angleboard). 
High-power binoculars (25 ×  150, Fuginon) were also used to estimate group size and for species 
identification, but the movement of the platform prevented their use as a primary searching method. 
Behaviour, sighting cue, swim direction and reaction to vessel were also recorded. When NBWs were 
close to the vessel, usually during extended stops at acoustic recording stations rather than during the 
survey transects, observers obtained high-resolution digital photographs of the whales’ heads, dorsal fins, 
and flanks using Nikon D1H cameras with AF Nikkor 80-200mm 2.8 zoom lenses. An experienced 
researcher (T. Wimmer) compared the shapes and sizes of scars and colour patterns on these NBW 
photographs with those in existing images in a catalogue maintained at the Hal Whitehead Laboratory at 
Dalhousie University, Halifax, Nova Scotia. 

ANALYSIS 

Detection function model and effective strip width (ESW) were estimated using the software Distance 4.1 
on ungrouped perpendicular distances of groups of individuals (Thomas et al., 2003; Buckland et al., 
2001). Detection curves were estimated for large whales, dolphins, and for each species not included in 
these two categories of species with similar detectability (e.g. size and surface cues). The large whale 
category included blue, fin, humpback, and sperm whales, and all large blows that could not be identified 
to species. The dolphin category included common, Atlantic white-sided, and bottlenose dolphins, harbour 
porpoises and small cetaceans identified as porpoises or dolphins. 
 
Line transect estimation is based on three principal assumptions: (1) all animals on the track-line are 
detected, (2) the animals are detected at their initial location before any reaction to the observer and (3) 
distances from the track-line are measured accurately. Correction factors, referred to as g(0) correction 
factors can be applied to density estimation to account for animals that were diving when the boat 
covered the area and to correct for the proportion of animals at the surface that might have been missed 
by observers. The estimation of density and abundance presented here did not include such a correction 
factor and should therefore be considered as indices. Distributions of perpendicular distances were 
examined to detect evidence of movement and aggregation around zero. Rounding of measurements was 
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evaluated from frequency distributions of measured variables (i.e. relative bearing, reticle angle, 
inclinometer angle and estimated distances). Single observations away from the bulk of sightings were 
truncated and the modified dataset was only used for analysis if truncation improved the fit and 
consistency between different detection models. The best of three key functions available in Distance 
(Uniform, half-normal and hazard-rate) was selected using Akaike’s Information Criteria (AIC), which 
selects the model that best fit the observation data, but includes a penalty for the number of parameters in 
the models. Adjustment terms were only added if no key function provided a suitable detection function. 
Post-stratification by season (spring and summer) and by cue (blow, splash, body) was examined using 
the best model and used if the sum of AIC of post-stratified detection curves was lower than the AIC value 
for a detection function of the pooled dataset. 
 
The dependence of cluster size on perpendicular distance was evaluated using the regression of log of 
group size (log(si)) on the probability of detection (g(x)), which when significant (p<0.15), provided an 
expected cluster size at maximum detectability (i.e. nearest perpendicular distance). 
 
Density and abundance indices of species in each of the three strata, Gully in spring, Gully in summer 
and Shortland-Haldimand in spring, were calculated using the overall or stratum detection function 
applied to the specific number of sightings and expected group size in each stratum. Encounter rate was 
estimated for each stratum and variance estimated empirically using lines as sampling units. Density, 
abundance and the Satterthwaite’s 95% confidence intervals which includes a correction for small sample 
sizes for detection curve, expected cluster size and encounter rate, were estimated from formulae of 
Buckland et al. (2001). All density and abundance indices are for animals at the surface when the survey 
was conducted, and do not include availability corrections for whales missed because they were diving 
(availability bias) or overlooked (perception bias) by observers. 
 
The Gully was surveyed over three days in the summer. The sightings of the 8 July were only used along 
with those of other days to select the overall detection model, but except for species that were only seen 
on that day (one blue whale and one fin or sei whale), the data were not used to estimate encounter rate 
for the entire period as this survey covered only the southernmost line. Summer density in the Gully was 
therefore averaged for 10 and 11 July and weighted by survey effort each day (see section 3.7 in 
Buckland et al., 2001). 

RESULTS 

SURVEY CONDITIONS 

Two days of systematic surveys were done in spring before seismic activity. Surveys were completed 
between 0645 and 1939, local time. Wind was the limiting factor with sea states suitable for surveys 
(Beaufort <4) encountered during two days out of four at sea. One set of five lines equalling 175 km were 
surveyed in the planned 1851 km2 stratum of the Shortland and Haldimand Canyon on 1 May. Of the 
planned survey design of 175 km, the team completed 148.4 km in the Gully on 30 April, which covered a 
rectangular area of 1565 km2 (Figure 73). 
 
Only the Gully area was covered by systematic survey in July. Surveys were completed between 0654 
and 2049 local time. Fog was the primary restriction for the survey, limiting visibility on seven of 11 days 
at sea. A total of 395.4 km of lines was surveyed over the 8, 10 and 11 July (Figure 74). Only 27.2 km of 
the southernmost line was covered on the 8th, and the northernmost line could not be completed on the 
11th, for a total of 158.2 km that day. A sixth line was added to the north of the survey area for 210 km of 
lines on the 10th, and that rectangular area surveyed was 2218 km2. Sea state conditions were more 
favourable in summer than in spring with conditions above Beaufort 3 for only part of the day on 11 July 
(line 4 and 5). 
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MARINE MAMMALS SIGHTED 

Marine mammal sightings in the Gully were less frequent and less diverse in spring than in summer, with 
seven marine mammal species sighted in the Gully and the Shortland-Haldimand areas. These animals 
were distributed in 25 groups for a total of 53 individuals in the Gully, and in 20 groups for a total of 31 
individuals in the Shortland-Haldimand area (Figure 73). The eleven species identified in the Gully in 
summer were distributed in 207 sighting events for a total of 563 individuals (Figure 74). 
 
Northern bottlenose whales, fin whales and sperm whales were the only three large whale species that 
were detected in both spring and summer, while blue and humpback whales were only detected in 
summer. Two blue whales were seen in transit between recording stations. One of these did not match 
any previously-identified individual in an existing catalogue (Richard Sears, MICS), and is thus an addition 
to the small Atlantic blue whale population. 
 
 (1) Northern Bottlenose Whales 

Twelve groups of NBWs were detected with one group of five animals seen in the Shortland Canyon on 
1 May during a day of survey outside of the Gully. This species has been previously associated with 
environments of water depth of 1000-1500 m (Hooker et al., 2002). Five out of 12 groups were detected 
in that depth range with exceptions detected in waters shallower than 800 m (3/4 groups) in spring and in 
waters deeper than 1900 m in summer (4/8 groups) (Figure 73 and Figure 74). 
 
Twelve groups of NBWs were detected up to 1550 m from the track-line (Figure 75). The detection 
function was estimated using the untruncated dataset pooled over all strata for which the best model was 
uniform (AIC=176.3). The modelled uniform detection probability of one represents the largest ESW 
possible, which is equivalent to a strip transect where width is determined by the largest perpendicular 
distance recorded, i.e. 1552 m (Figure 75). With this model, the eight NBWs detected on 30 April, and the 
29 detected on 10 and 11 July, were used to provide abundance indices for the Gully of 44 whales (95% 
CI: 19–105 whales) and 68 whales (95% CI: 20-230 whales), respectively (Table 10). 
 
These results can be treated as a pilot survey to estimate the total length of survey lines required to 
produce a density estimate with a target precision (e.g. CV of 20%, see 7.2.2 in Buckland et al., 2001). 
Given the eight groups detected over 395.4 km of lines surveyed in the Gully in July, a total of 2966-
3954 km of lines would be required to provide the 60-80 observations that are assumed necessary to 
produce a reliable detection model. These efforts would then provide abundance indices with CVs of 22% 
and 19%, respectively. 
 
The NBWs did not appear to react to the survey vessel, but approached and circled the vessel was 
stopped at two acoustic recording stations within the Gully (stations d2.5 and f2, see McQuinn and 
Carrier, 2005). The whales’ respiration rates and surfacing frequencies were similar during our 
observations made during seismic operation to whale behaviour video recorded in the Gully previously by 
Whitehead’s research team, and to video of NBWs taken off Labrador. After comparing the digital 
photographic records of NBW taken during the project with identified whales for the Gully, approximately 
11 whales were uniquely identifiable, and of these, three already existed in the Whitehead NBW Gully 
catalogue. With no obvious permanent markings, it is unlikely the other whales can be matched to 
individuals in the catalogue.  
 
(2) Large Whales 

Four species of large whales were identified and detected in 52 groups. Only fin and sperm whales were 
identified in spring. Fin whales were detected in four groups (nine animals) in the Gully and in three 
groups (five animals) over the shelf in the Shortland Haldimand area (Figure 73). Two single sperm 
whales were detected at the head of the Shortland Canyon in waters 300 to 400 m in depth. These two 
species were still present in similar numbers in the Gully in July with five groups or seven fin whales and 
one pair of sperm whales. The seven humpback and one blue whale were seen only in July. 
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Table 10. Density indices of Northern bottlenose whales and 10 species of marine mammals in the 
Gully on 30 April, 10 and 11 July and in the Shortland Haldimand area on 1 May 2003. 
Analyses were conducted using the software Distance 4.1. Abundance indices are based on 
1851 km2 for the Shortland Haldimand area and on 1565 km2 and 2218 km2 for the Gully in 
spring and summer respectively. Density and abundance indices are not corrected for 
availability (g(0)) to consider the proportion of animals not at the surface or overlooked while 
the vessel was passing. 

Species 
n Pooled 
n/stratum 

Pooled 
ESW (CV) 

Encounter 
rate (CV) 

Expected 
cluster size 

(CV) 
Density 
index (CV) 

Abundance 
index (95% CI) 

Northern bottlenose 
whale 

12 1552 (0)     

Shortland / Haldimand 1  0.006 (1.00) 5.0 (0) 0.009 (1.00) 17 (2–172) 
Gully April 3  0.020 (0.32) 4.3 (0.15) 0.028 (0.36) 44 (19–105) 
Gully July     0.031 (0.59) 68 (20–230) 
 10 July 6  0.029 (0.68) 4.2 (0.27) 0.038 (0.74) 85 (18–412) 
 11 July 2  0.013 (0.94) 5.0 (0) 0.020 (0.94) 34 (4–309) 
Large whales  49 951 

(0.21) 
    

Shortland / Haldimand 8  0.046 (0.32) 1.5 (0.13) 0.036 (0.40) 67 (28-159) 
Gully April 8  0.054 (0.38) 2.0 (0.25) 0.057 (0.51) 89 (31-254) 
Gully July     0.051 (0.31) 114 (61–214) 
 10 July 15  0.071 (0.25) 1.5 (0.09) 0.055 (0.34) 122 (61–245) 
 11 July 14  0.088 (0.42) 1.0 (0.00) 0.047 (0.47) 78 (26–232) 
Fin whale       
Shortland Haldimand 3  0.017 (0.67) 1.7 (0.20) 0.015 (0.73) 28 (5–141) 
Gully April 4  0.027 (0.38) 2.3 (0.42) 0.032 (0.61) 50 (14–179) 
Gully July     0.010 (0.47) 22 (8-57) 
 10 July 2  0.010 (0.63) 2.0 (0.00) 0.010 (0.67) 22 (5–97)) 
 11 July 3  0.019 (0.49) 1.0 (0.00) 0.010 (0.54) 17 (5–58) 
Humpback whale       
Shortland / Haldimand 0      
Gully April 0      
Gully July     0.010 (0.45) 22 (9–55) 
 10 July 3  0.014 (0.45) 1.3 (0.25) 0.010 (0.56) 22 (7–71) 
 11 July 3  0.019 (0.61) 1.0 (0.00) 0.010 (0.65) 17 (4–77) 
       
Sperm whale       
Shortland / Haldimand 2  0.011 (1.00) 1.0 (0.00) 0.006 (1.02) 11 (1–108) 
Gully April 0      
Gully July     0.003 (1.02) 6 (1–53) 
 10 July 1  0.005 (1.00) 2.0 (0.00) 0.005 (1.02) 11 (1–93) 
 11 July 0      
       
Dolphin Sp. 32 523 

(0.13) 
    

Shortland / Haldimand 4  0.023 (1.00) 1.5 (0.19) 0.032 
(102.69) 

61 (6–586) 

Gully April 6  0.040 (0.72) 2.0 (0.22) 0.077 (0.76) 121 (21–686) 
Gully July     0.795 (0.37) 1763 (849–

3659) 
 10 July 33  0.157 (0.33) 6.8 (0.24) 1.017 (0.43) 2256 (928–

5484) 
 11 July 25  0.158 (0.55) 3.3 (0.13) 0.500 (0.58) 836 (209–3349) 
Common dolphin       
Shortland / Haldimand 0      
Gully April 0      
Gully July     0.322 (0.43) 714 (297–1711) 
 10 July 12  0.057 (0.47) 6.9 (0.21) 0.377 (0.53) 837 (266–2632) 
 11 July 11  0.070 (0.63) 3.7 (0.16) 0.248 (0.66) 414 (88–1950) 
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Species 
n Pooled 
n/stratum 

Pooled 
ESW (CV) 

Encounter 
rate (CV) 

Expected 
cluster size 

(CV) 
Density 
index (CV) 

Abundance 
index (95% CI) 

White-sided dolphin       
Shortland / Haldimand 0      
Gully April 0      
Gully July     0.036 (1.14) 81 (8–842) 
 10 July 2  0.010 (1.00) 6.5 (0.69) 0.059 (1.00) 131 (11–1537) 
 11 July 1  0.006 (0.94) 1.0 (0.00) 0.006 (0.95) 10 (1–93) 
Bottlenose dolphin       
Shortland / Haldimand 0      
Gully April 0      
Gully July     0.031 (1.01) 69 (8–596) 
 10 July 1  0.005 (1.00) 12 (0.00) 0.055 (1.00) 121 (14–1045) 
 11 July 0      
Harbour porpoise       
Shortland / Haldimand 4  0.023 (1.00) 1.5 (0.19) 0.033 (1.03) 61 (6–586) 
Gully April 4  0.027 (0.64) 2.3 (0.28) 0.058 (0.71) 91 (19–442) 
Gully July       
 10 July 0      
 11 July 0      
       
Minke whale 32 236 

(0.46) 
    

Shortland / Haldimand 3 58a (0.78) 0.017 (0.67) 1.0 (0.00) 0.148 (1.02) 274 (30–2495) 
Gully April 1  0.007 (0.90) 1.0 (0.00) 0.058 (1.19) 91 (9–923) 
Gully July  383a 

0.45) 
  0.106 (0.54) 236 (83–668) 

 10 July 17  0.081 (0.49) 1.0 (0.00) 0.106 (0.67) 234 (64-859) 
 11 July 13  0.082 (0.27) 1.0 (0.00) 0.107 (0.52) 179 (65–496) 
       
Pilot whale 13 1002 

(0.00) 
    

Shortland Haldimand 0      
Gully April 1  0.007 (0.90) 4.0 (0.00) 0.013 (0.90) 21 (2–179) 
Gully July     0.103 (0.57) 228 (65–804) 
 10 July 6  0.029 (0.52) 2.2 (0.22) 0.031 (0.56) 68 (20-236) 
 11 July 8  0.199 (0.59) 7.9 (0.34) 0.199 (0.68) 332 (77–1429) 
       
Grey seal 5 86a (0.50)     
Shortland Haldimand 2  0.011 (1.00) 1.0 (0.00) 0.066 (1.12) 123 (14–1089) 
Gully April 3  0.020 (0.90) 1.0 (0.00) 0.117 (1.03) 184 (24–1384) 
Gully July 39 113a 

(0.37) 
  1.110 (0.50) 2462 (927–

6540) 
 10 July 47  0.224 (0.44) 1.5 (0.18) 1.502 (0.58) 3332 (1062–

10 453) 
 11 July 20  0.126 (0.35) 1.1 (0.05) 0.590 (0.48) 987 (370–2634) 
 
a Seasonal detection curves were used for estimations of density for minke whales and grey seals. 
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Figure 73. Distribution of all observations recorded during the baseline survey of 162 km of lines in the 
Gully on 30 April and of 174 km of lines in Shortland and Haldimand Canyons on 
1 May 2003. Transects surveyed in the Gully, and in Shortland and Haldimand Canyons are 
shown by grey lines. 

 
Sightings of large whales, detected in spring and summer, were combined for model selection. The 
distribution of perpendicular distances suggested truncation at 3353 m, excluding two sightings estimated 
to be at 8.3 km and 9.1 km from the track-line. The distributions of recorded relative bearing, reticle 
readings, inclinometer angles, estimated distances and perpendicular distances did not suggest failure of 
assumptions such as rounding of measurements by the observers or movement away from the vessel 
(Figure 76). The hazard-rate model (AIC=751.6) for the remaining 49 groups of large whales provided an 
ESW of 951 m (95% CI: 621–1456 m). 
 
Model selection was not improved by season stratification (sum of AICs=754.7) nor by cue stratification 
(pooled body and blow AIC=677.4, sum of stratified AICs=675.6). No cluster size bias was detected from 
the regression of the pooled log of cluster size (log(s)) over detection function (g(x)) (T=0.36, df=47, 
p=0.64), and therefore mean cluster size per stratum was used for specific density and abundance indices 
(Table 10). 
 
The numbers of groups of each species of large whale detected within each stratum only varied from one 
to four for a given day. Although fin whales might have been considered the most consistently detected 
species, with daily detections of two to four groups, such infrequent sightings and large coefficients of 
variation (CV 45% to 102%, Table 10) could not detect any difference in density or abundance indices 
between strata. 
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Only one blue whale and one animal identified as either a fin or sei whale were detected on transect on 
8 July. Assuming a similar distribution of density for these species as for all other large whale species (i.e. 
similar encounter rate CV), density of blue whales in summer for the three days of survey would be 0.0013 
(CV=1.02; 95% CI: 0.0002–0.0076), for a corresponding abundance index of three (95% CI: 1–17). 
 
(3) Dolphins (Small Odontocetes) 

We use the term “dolphin” for this group in the next sections even though it might be more properly referred 
to as “small odontocetes”, as this group includes harbour porpoises along with common, Atlantic white-
sided and bottlenose dolphins. Seventy-two groups of dolphins were detected during spring and summer, 
but species composition varied between the two missions. Although the effort was greater and sea state 
lower in the Gully in summer, the eight groups of harbour porpoises identified were detected in spring, in 
water equal to or shallower than 200 m (Figure 73). Except for two groups of unidentified dolphins in spring, 
dolphin species were seen only in summer. Common dolphins were seen at the mouth and at the head of 
the Gully as defined by the 200 m isobath. The 13 white-sided dolphins, seen in two groups, were detected 
at the mouth of the Gully and the group of 12 bottlenose dolphin was seen on Sable Island Bank (Figure 
74). 
 
The distribution of perpendicular distances of dolphins revealed one peak on the track-line, and a second 
between 300 and 400 m suggesting that there might have been movement either towards or away from the 
vessel at close range as has been reported for dolphins elsewhere (Figure 77, e.g. Würsig et al., 1998). 
Some groups were obviously moving towards the vessel to bow ride, and it is possible that reaction to the 
vessel affected their location prior to their initial detection by observers. The distribution of initial swimming 
direction of dolphins relative to the bearing from the vessel to their location, shows that most of the 
detections are made when dolphins were swimming perpendicularly to the detection angle (Figure 78). This 
suggests they were easier to sight when exposing their body side to observers, rather than an indication of 
movement towards or away from the vessel. The fast movement of dolphins and reaction to the vessel 
could be a potential bias in the abundance estimation. 
 
Dolphins were detected up to 1.9 km from the track-line, but the only three observations beyond 1178 m 
were truncated. The hazard-rate was the best model for the remaining 67 perpendicular distances 
(AIC=905.4) and was used for dolphin density estimation. Model selection was not improved by 
stratification by season (spring + summer AICs=905.3) nor by cues (splash + body AICs=817.1; AIC pooled 
for 60 observations with cues=814.3). The pooled model provided an ESW of 523 m (95% CI: 402–680 m). 
There was no relationship between the log of cluster size and detection probability (T=-0.46, df=62, 
p=0.32), therefore mean cluster size was used within each stratum for density estimation (Table 10). 
 
Since they all used the same detection curve, the only difference in dolphin species abundance between 
strata was the expression of different encounter rates and expected cluster sizes. The most obvious 
difference comes from species composition between season, with harbour porpoises only identified in 
spring in both the Gully and the Haldimand Shortland area, and never identified in summer when sea states 
were lower and overall small odontocete density was higher. Of the three species of dolphins present in the 
Gully in summer, common dolphins were the most abundant, and the most prevalent of all cetaceans. 
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Figure 74. Distribution of all observations recorded along 400 km of lines covered over the 8, 10 and 
11 July 2003 in the Gully area, while seismic operations were underway in an area 27 to 
56 km to the southwest of the end of survey lines. Transects surveyed are shown by grey 
lines. 
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 (4) Minke Whales 

Thirty-five minke whales were detected during the spring and summer surveys. Three animals were seen in 
Shortland Canyon, and one in the Gully in spring (Figure 73). Eighteen of the 29 minke whales seen in 
summer were sighted in water depths of less than 200 m over the eastern Sable Island Bank (Figure 74). 
 
Minke whales were detected up to 1142 m from the track-line and always alone. The distribution of the 33 
recorded perpendicular distances suggest some heaping at 0 m, below 400 m and 750 m, but examination 
of relative bearing, reticule measurements, angles from inclinometer and estimated distances does not 
reveal any signs of rounding that would have indicated recording errors, so data were treated as recorded 
without any transformation or grouping. Truncation was done at 767 m to eliminate one observation at 
1142 m. For the remaining 32 minke whales detected in spring and summer, the hazard-rate was the best 
model (AIC=378.5). No post-stratification by cue could be done as only the 25 minke whales detected when 
their body broke the surface provided enough data to estimate a model. Model selection was improved by 
post-stratification by season (sum of AICs=375.5), which revealed that the four spring minke whales were 
detected closer to the track-line than would have been expected from the summer-based distribution of 
perpendicular distances (Figure 79). The seasonal detection functions provided an ESW of 58 m (95% CI: 
3–1112 m) in spring and 383 m ( 95% CI: 157–936 m) in summer. 
 
The narrower detection function in spring than in summer suggested that searching for minke whales might 
not have been as effective during the first mission. This might be due to the higher sea states in spring, but 
this did not affect detection of other species. Encounter rates were also smaller for both geographic strata 
in spring than in the Gully in summer which compensated for the narrower strip with in estimation of density 
and abundance. However, the low number of observations for the detection function and the lower 
encounter rates in spring increased the variance associated with the estimation of each of these 
components. This resulted in an abundance estimate of 91 (95% CI: 9–923) in the Gully in April that was 
lower and not as precise as the July abundance estimate of 236 minke whales (95% CI: 83–668). 
 
 (5) Pilot Whales 

One group of four pilot whales was detected in spring and 14 groups were detected in summer. They were 
seen from the north to the south of the Gully with seven groups seen at the mouth of the Gully as defined 
by the 2000 m isobath (Figure 73 and Figure 74). 
 
The detection curve was estimated using data from 13 groups, which ranged out to 1002 m from the track-
line (Figure 80). The untruncated perpendicular distances were used because the number of observations 
was limited and no obvious outliers were present. As for NBWs, the best model was uniform (AIC=179.7), 
which provided an ESW of 1002 m. No post-stratification by season nor cue could be tested because 12 of 
the 13 sightings were detected in summer and 11 of the sightings were detected by their bodies, with only 
one blow and one splash being seen.  
 
Pilot whales in the Gully were less abundant on 30 April with 21 whales (95% CI: 2–179) than they were in 
July with 228, 95% CI: 65–804). This difference was due to the presence of more groups in July, as 
revealed by higher encounter rates, rather than to a difference in group size (Table 10). 

(6) Grey Seals 

Grey seals were more numerous in Gully waters in summer with 68 groups and 93 individuals, than in 
spring when only three individuals were detected on 30 April. All grey seals were detected in waters equal 
to or shallower than 200 m, and 62 groups (91% of summer groups) were detected on the eastern Sable 
Island Bank in summer (Figure 73 and Figure 74). 
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Figure 75. Distribution of the perpendicular distances from track-line for the 12 groups of northern 
bottlenose whales sighted during spring and summer, with the uniform detection curve 
providing an ESW of 1552 m, the maximum perpendicular distance. 
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Figure 76. Distribution of all large whale (blue, fin, humpback, sperm and unidentified large whales) 
perpendicular distances from track-line during spring and summer, and the detection curve 
(hazard-rate) fitted on dataset truncated at 3353 m which provided an ESW of 951 m (95% 
CI: 621-1456 m). 
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Figure 77. Distribution of all dolphins (common, Atlantic white-sided, and bottlenose dolphin) and 
harbour porpoises perpendicular distances from track-line during spring and summer, and 
the detection curve (hazard-rate) fitted on the untruncated 67 observations which provided 
an ESW of 523 m (95% CI: 402-680 m). 
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Figure 78. Swimming angle of dolphin groups relative to sighting angle. The 0° angle indicates that 
dolphins are swimming towards the vessel, 180° indicates that they are swimming away, and 
an angle of 90° indicates that the dolphins are swimming perpendicular to the sighting angle 
and showing their left side. 
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Figure 79. Distribution of minke whale perpendicular distances from track-line truncated at 767 m and 
the detection curve (hazard-rate) fitted separately on four observations in spring and 25 
observations in summer that provided ESWs of 58 m (95% CI: 3-1112 m) and 383 m (95% 
CI: 157-936 m) respectively. 
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Figure 80. Distribution of the perpendicular distances from track-line data for the 13 groups of pilot 
whales sighted during spring and summer, with the uniform detection curve providing an 
ESW of 1002 m, the maximum perpendicular distance. 
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Figure 81. Grey seal perpendicular distances from track-line truncated at 260 m and the detection curve 
(hazard-rate) fitted separately on five observations in spring and 39 observations in summer 
that provided ESWs of 86 m (95% CI: 19-387 m) and 113 m (95% CI: 58-217 m), 
respectively. 
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As priority was given to observing cetaceans, distance measurements were recorded for 45 of the 73 
groups of grey seals detected. Maximum perpendicular distance was 376 m. Truncation at 260 m left 44 
observations from which hazard-rate was selected as the best model (AIC=481.1) (Figure 81). The five 
groups detected in spring might not have followed a similar distribution as in summer and detection function 
was estimated independently for seasons (sum of AICs=479.6). The ESW was 86 m (95% CI: 19–387 m) 
and 113 m (95% CI: 58–217 m) for spring and summer, respectively. 
 
All grey seals detected in spring were single animals and there was no dependence of the log of cluster 
size with detection probability in summer (T=0.041, df=37, p=0.52). Therefore, mean cluster size was used 
within each stratum for density estimation (Table 10). Grey seals were the most abundant species in the 
Gully in both April and July. The species increased in abundance from April to July with abundance 
estimates of 184 (95% CI: 24–1089) and 2462 (95% CI: 927–6540), respectively (Table 10). 

DISCUSSION 

This baseline study was the first systematic ship-based line-transect survey designed to collect information 
on the species composition, abundance and distribution of marine mammals in the Gully area. Originally, a 
more ambitious programme was conceived, to evaluate potential changes in composition, abundance, and 
distribution in relation to seismic exploration. The project was to be conducted in one mission covering a 
period immediately prior to seismic operations as a baseline study, and then continuing after seismic 
operations started, to reduce confounding factors related to seasonal biotic changes. 
 
Due to technical problems in 2003, the onset of the seismic programme was delayed by weeks, resulting in 
a strong possibility that the difference in marine mammal species composition, distribution, and abundance 
between the two study periods is due to seasonal movements of the different species, as previously 
reported through variation of cetacean abundance between summer months in the Gully (Gowans and 
Whitehead, 1995; Hooker et al., 1999). Where possible, further studies to address the impact on 
distribution of marine mammals should be conducted over a short time frame, as originally planned for 
2003. Furthermore, to reduce other confounding effects these studies should also include studies of control 
areas to estimate the importance of density estimation changes at different time scales, with and without 
the occurrence of seismic activity. 
 
Despite the changes to the survey design, in general a greater number of marine mammals were detected 
in the Gully in summer even though seismic surveys had been conducted outside the Gully and other 
canyons since 3 May to the east (EnCana Corporation) and since the 20 June to the south-west (Marathon 
Canada Ltd). More specifically, numbers remained similar between the two missions for NBWs and for the 
large blue, fin and sperm whales, which are thought to have better hearing sensitivities in the lower 
frequency range where much of the seismic energy is contained, and where sound propagates well (Figure 
82). These surveys show that these marine mammal species were present in the Gully when exposed to 
received seismic sound levels up to 145 dB re 1 µPa (rms). However, these visual surveys were conducted 
while Marathon was acquiring seismic data at the most distant end of their survey area relative to the Gully; 
no data on abundance and distribution of marine mammals within the Gully were collected when the 
seismic exploration was conducted at the proximal extremity of their seismic programme that ended three 
months later, on 15 October. At a range of 20 km, which corresponds to the distance between a location 
where NBW were sighted earlier in the summer and the closest approach of Marathon’s seismic array to 
the Gully area, and with propagation conditions similar to what has been estimated for July, NBW and other 
marine mammals could have been exposed to sound levels of 155 to 157 dB re 1 µPa (rms). 
 
There appeared to be no relationship between the distribution of whales and acoustic isopleths obtained 
from the acoustic aspect of this project, but the acoustic and visual survey effort provided a small sample 
for evaluation. The acoustic sampling in spring produced a limited representation of the acoustic baseline 
information for the Gully, and as for marine mammal distribution, the apparent seasonal variation in 
ambient and seismic noise exposure could not be fully evaluated. 
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Figure 82. Received sound levels (SEL), locations of seismic source during acoustic measurements, 
and locations of sightings for NBWs and blue whales in the Gully, 2003 (from McQuinn and 
Carrier 2005, this volume). 

 
The seasonal differences in abundance of different marine mammal species in itself can be used to 
evaluate the possible efficiency of mitigation measures such as area or seasonal restrictions of potentially 
disturbing human activities. The results of this project, together with previous studies, indicate that these 
mitigation approaches might not be effective for NBWs as this species appears to always be present in the 
Gully area (Hooker et al., 1999). The different hearing capabilities of the species present should also be 
considered when seasonal or regional restrictions are proposed as mitigation measures. Larger 
odontocetes, such as the NBWs and sperm whales, use acoustic frequencies generally higher than the 
primary acoustic energy range of seismic sources. Therefore, although not yet studied using telemetered 
individuals or by a finer-scale survey effort, the potential impacts of seismic sounds on these toothed 
whales may be less than on the large mysticetes. Indirect or long-term effects of seismic sound exposure 
were not addressed in this study. For example, the potential effects of seismic sounds on squid, such as 
Gonatus sp. which are believed to be an important prey of NBW (Hooker et al,. 2001), have yet to be 
studied in the Gully. 
 
The abundance indices for NBW and for other species presented in this document are most likely 
underestimations of their real abundance in the Gully in spring and summer 2003. The numbers of NBWs 
were not sufficient to estimate the reduction in probability of detection with distance from the track-line. A 
higher number of sightings would have likely produced a narrower ESW than the uniform model, leading to 
a higher abundance index. For instance, the estimated ESW of 1552 m for NBWs, is larger than the 951 m 
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estimated for large whales, so it is likely that the uniform model used in this study provided a conservative 
estimate of abundance of NBWs in the Gully. Nevertheless, these indices of 44 NBWs in spring and 68 in 
summer are similar to the 44 (SE=6) estimated to be present in the Gully at any given time derived from 
photo-identification techniques used previously (Gowans et al., 2000). However, our abundance indices of 
all species do not yet include a correction for missed whales on the track-line {g(0)} due to their diving 
behaviour and observer oversight. Such a correction to the NBW indices in this study, if we use a 0.96 
proportion of animals detected on the track-line as has been estimated for Baird’s beaked whale and 
presumed to be similar for NBWs (see Barlow, 1999; Hooker and Baird, 1999), would yield abundance 
estimates of 46 for spring and 71 for summer. However, this 0.96 correction factor was estimated for 
observers using 25 × 150 (“big eyes”) binoculars, and it is likely that our team, using unaided vision, would 
have detected a lower proportion of animals on the track-line, necessitating an even larger correction factor 
and further increasing the abundance estimates. Producing better abundance estimates of NBWs and 
other species would require a variety of approaches: (1) increased visual survey effort (including aerial 
methodologies) to reduce the large variance of abundance indices, and (2) further telemetry and behaviour 
modelling studies to produce more acceptable availability bias and perception bias correction factors. 
 
This is the first systematic ship-based line-transect survey of the Gully. The time available for survey 
represents a relatively small effort due to weather conditions impacting visibility and sea state such that 
60% of the days at sea (9/15) were not optimal for survey. Using this as a pilot survey for NBWs in the 
Gully, and given (1) the recorded encounter rates, (2) the 2966-3954 km of lines required to provide 60–80 
sighting records, and (3) the expected abundance estimates with target CV of 22% and 19%, future 
surveys would require 160-213 h of suitable survey conditions for a vessel speed of 18.5 km/h. If this can 
only be conducted on 40% of the available ship time, then 400-534 h of ship time during daylight hours 
would be required if weather conditions were similar to what was experienced in 2003. Further Gully 
surveys could also be designed to concentrate survey effort in recognised “primary” NBW area. Different 
stratification could increase the effort in these “primary areas”, which may lead to an increase in the 
number of sightings to develop suitable detection curves and a reduction of the variance associated with 
encounter rates that would provide more reliable and precise abundance estimates. One advantage of a 
systematic visual survey over previous photo-identification work used for abundance estimation is that it 
provides geographically-distributed effort datasets that can be more easily employed for NBW habitat use 
analysis using GIS applications. 
 
Another way of improving abundance estimates, would be to increase the number of sightings through the 
efficiency of the observer team, by using high-power binoculars (25 ×  150) as the primary search tool. If 
sightability was good and the sighting platform more stable than the Strait Signet, or sea state conditions 
better than they were in spring and July 2003, the use of “big eye” binoculars could likely increase the 
number of sightings. For example, we obtained an ESW of 951 m for large whales with a platform height of 
7 m. The same binoculars used on a vessel platform 10 m above sea level in California resulted in an ESW 
of 1,437 m for large whales (Barlow 1995), representing a search area 1.5 times larger than we had in the 
Gully. This searching efficiency could have been increased further, by 11% in the same California example, 
with a second team of observers (Barlow, 1995). 
 
This project, when we include a minimal correction factor for animals not at the surface, provided seasonal 
abundance estimates of NBWs within the Gully of 46 in spring and 71 in summer that are considered to be 
underestimations of the real abundance. These values are similar or larger than an estimate based on 
photo-identification (Hooker et al,. 2002). However, the precision of these estimates, based on four days of 
systematic survey, could be improved by increased effort. The fact that only 27% (3 of 11) of the uniquely 
identifiable NBWs could be matched with whales in the Gully catalogue suggests that further photo-
identification efforts are warranted as a component of visual surveys. 
 
This project was not a thorough assessment of the impact of seismic activity on marine mammal 
abundance in the Gully. Even though the importance of seasonal variation in density could not be 
evaluated, we found that the species of concern (northern bottlenose whales, mysticetes, and sperm 
whales) were still present in the Gully when exposed to sound levels of 145 dB re 1 µPa (rms), after 
seismic activities had been underway for several weeks. The information on effort, density and associated 
variance provided by this project, can be used to estimate the survey effort that would be required, through 
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longer ship-time periods or more effective searching techniques, to better detect changes in abundance 
and distribution at the scale that are shown from these results. Changes in abundance and distribution from 
surveys such as this provide measures of change at a population scale. However, a study intended to more 
thoroughly assess the impacts of seismic operations or any other human activity on a marine mammal 
population should include the monitoring of whales equipped with satellite-linked transmitters, time-depth-
velocity-sound recorders or other telemetry devices to measure the more subtle changes in behaviour at an 
individual scale. 
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APPENDIX 1. Rational for a Five Saw-Tooth Transect Line Survey 

This survey design was established on the basis that the large 25 ×  150 binoculars would be used for 
scanning for northern bottlenose whales as target species. The total length of survey lines required to 
produce a density estimate with a target CV of 20% (e.g. CVt(D)=0.20) can be estimated using the following 
formula (Buckland et al., 2001): 
 

L=[ b / {CVt (D)}2 ] [Lo / no ]  (1) 
 

and then the expected number of sightings can be estimated using: 
 

n=L (no/Lo) (2) 
 
The unknown factor b should be estimated by a pilot survey, but it has been determined to be quite stable 
and a value of 3 has been determined to be conservative, i.e. this value would overestimate the required 
sample (Burham et al,. 1980: 36). The factor no/Lo is the encounter rate that can be predicted by multiplying 
estimated values of density of groups of northern bottlenose whales in the Gully with the probability of 
detecting animals on the track-line (g0), and twice the ESW estimated for proxies. Photo-identification work 
estimated that 44 (SE=6) northern bottlenose whales were present in the Gully at any given time in groups 
of three (mode ± SD: 3.04 ± 1.86)(Gowans et al., 2000, Gowans et al., 2001). This would represent a 
density of 0.024 group/km2 for the 1851 km2 planned survey area that includes the entire area most 
frequented by this species (Hooker et al., 2002c). Barlow (1999) modelled g0 for long-diving whales for a 
team of two observers using 25 ×  150 binoculars and a recorder in sea states of Beaufort 0 to 5. We used 
the estimate of g0=0.96 for Baird’s beaked whale, Berardius bairdii, which had the proportion of time at 
surface (23% of time) that was most similar to what has been reported for northern bottlenose in the Gully 
(30–38%: Hooker and Baird, 1999). For ESW, we used 1.4 km (f(0)=0.614, truncation 3.7 km) estimated for 
small whales using 25 ×  binoculars in the Pacific (Barlow 1995). A total of 3431 km of lines would have 
been required to provide a CVt(D)=0.20 for a survey using 25 ×  binoculars, which would have provided 
75 sightings. In order to attain this objective, sets of 175 km zigzag lines covering the Gully would have had 
to be repeated 20 times, and would have required 185 hours of ship time at 18.5 km/h. 
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ABSTRACT 

S. Vagle, P. Chandler and N. Erickson. 2005. Marine mammal vocalization data from the Gully region off Nova Scotia. 
Pages 139-154, In, K. Lee, H. Bain, and G.V. Hurley, Eds. 2005. Acoustic Monitoring and Marine Mammal Surveys in 
The Gully and Outer Scotian Shelf before and during Active Seismic Programs. Environmental Studies Research 
Funds Report No. 151, 154 p + xx.  
 
In the present study, more than 50 hours of mid-water column acoustic recordings were collected during two cruises in 
April and July 2003. The recordings, with an acoustic bandwidth of 24 kHz, were used to detect marine mammal 
vocalizations (MMV) with a range of frequencies and occurrences. The use of a neural network analysis approach 
provided superior MMV detection but was not suitable as a classification tool. The presence of MMVs from different 
species at the same time requires much more extensive network training than in previous analysis of single species 
data. A combination of neural network analysis and a windowed spectrogram approach worked well on the available 
data. The acoustic data clearly show the abundance of marine mammals in the Gully region with about 80 percent of 
the acoustic records containing MMVs.  However, the use of hydrophones suspended from a vessel significantly 
compromised the quality of the data and more than 30 percent of the data that was recorded was unsuitable for 
analysis. The use of moored, self-recording hydrophone systems should seriously be considered in any future 
monitoring, and to evaluate impact of seismic activity on marine mammals the monitoring should commence early and 
end late. 
 

INTRODUCTION 

The areas in and around the Sable Island Gully are sensitive habitats for marine mammals and this has 
resulted in increased precaution by regulatory bodies when it comes to potential negative effects from man 
made activities. Also, the potential for substantial oil and gas reserves in the area has increased the 
underwater acoustic noise levels to which the local fish and mammal populations are exposed, both from 
increased shipping and from the use of seismic airgun arrays. These issues have accelerated the need for 
appropriate studies to evaluate the potential impact this noise might have on the fish and marine mammal 
populations. This is especially important when dealing with special status species such as the northern 
bottlenose whale, which is listed as an endangered species under COSEWIC. The main northern 
bottlenose whale distribution is in and around the Sable Island Gully and adjacent marine canyons recently 
designated a Marine Protected Area (MPA). One of the objectives during the Gully Seismic Research 
Program was to expand the knowledge base on the density and distribution of these whales and other 
marine mammals into offshore areas off the Gully region. The objective was to do visual and passive 
acoustic surveys before and during a three dimensional seismic shooting program in adjacent exploration 
blocks leased by Marathon Canada Ltd. 
 
As part of this study, over 50 hours of mid-water column acoustic recordings were collected during two 
cruises in April and July 2003. These recordings have an acoustic bandwidth of 24 kHz for detection of 
marine mammal vocalizations (MMV) with a range of frequencies and occurrences. (For a more detailed 
description of the equipment used, see McQuinn and Carrier, 2005 in this volume). During these cruises 
there were also marine mammal observations (MMO) throughout the area (weather permitting) to obtain 
distributional information and to help in identifying the MMVs (see Gosselin and Lawson, 2005 in this 
volume). 
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The goal of this particular part of the program was to identify different marine mammal vocalizations and to 
determine the periods and locations that the different vocalizations were heard. We were especially 
interested in determining the distribution of the northern bottlenose whale and look for any behavioural 
changes associated with the use of air guns in the area. 

OBSERVATIONS 

The visual observations were carried out from the 30 April to 1 May, and from the 8th to the 11th of July 
2003. Figure 83 shows the distributions of these observations categorized by the type of mammal. The 
‘unknown’ category includes observations of whales of various sizes but unidentifiable species. The 
number in the figure legend associated with each species refers to the number of sightings (not necessarily 
the number of mammals). The main point from these two figures, with regards to the present analysis, is 
the fact that the variety of species and overall number density of mammals were higher in July than in April 
(see Gosselin and Lawson, 2005 in this volume). 
 
The acoustic data were collected by a hydrophone lowered from a vessel and recorded on magnetic tape 
(see McQuinn and Carrier, 2005 in this volume). During recording periods the ship’s engines and 
generators were shut down. However, any surface deployed system will be prone to platform related noise 
and flow noise due to ship roll and heave, especially during higher sea states. In April the weather was 
particularly bad and significant platform related noise contaminated parts of the recordings. Before the July 
survey the deployment scheme was modified and this combined with lower sea states significantly 
increased the data quality.  
 
Each data file included up to 40 minutes of data digitized at 48 kHz. A station number identified each of the 
data files (see Figure 83) and the depth of the hydrophone (typically a mid-water depth varying from 50 to 
90 m depending on the station). In total over 7 hours of acoustic data were collected in April, of which about 
5.5 hours were considered suitable for analysis, the rest being contaminated by platform noise. In July 
about 13 hours of the 21.5 hours recorded were used in the analysis. 
 
The acoustic data span the period from the 26th to the 29th of April, and from the 5th to the 8th of July, and 
the13th and 14th of July. Unfortunately, due to some logistical problems in April and the frequent occurrence 
of fog in July, there are no coincident visual and acoustic observation periods. During the April survey 
period there was no seismic activity in the area in contrast to the July survey when the seismic ship was 
operating in the area 24 hours a day. 
 
The acoustic data identified as suitable for marine mammal vocalization analysis included a range of 
distinct sounds. One of these is the quite distinct, short and broadband feature or clicks above 18 kHz, 
associated with northern bottlenose whales. And even though these clicks were of greatest interest in this 
particular study, we have categorized a number of distinct vocalizations, as listed in Table 11. The data set 
has been analyzed for all of these types of vocalizations. Only the clicks at frequencies above 18 kHz and 
assumed to be from northern bottlenose whales were categorized. The lower frequency clicks, presumably 
from sperm whales, have not been included in this study. 
 
In the second data set collected in July there seems to be an abundance of whistles (6000-18000 Hz) that 
dominates several files. These MMVs are most likely dolphins, which were much more abundant in July 
(see Figure 83). 
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Figure 83. Distribution of marine mammals (MMOs) observed during the April (top) and July (bottom) 

surveys. The Gully marine protected area is outlines by the green dashed line in both panels 
and the stations used for acoustic recordings are identified with red circles. 

DATA ANALYSIS 

The primary approach used to identify these signals was a neural network applied to the spectrogram of 
the acoustic data (e.g., Dasgupta, 1991; Hinton, 1992). This method has been effective on data collected 
from Orca whales off the BC coast (Vagle et al., 2004). 
 
The network was trained using back-propagation with gradient descent, momentum, and an adaptive 
learning rate and had 258 input neurons and one output neuron. Every 1/2 s of raw data was processed to 
generate a complex spectrogram, which was passed to the neural net that was programmed to include a 
mammal vocalization output. The process was repeated every third of a second to provide an overlap of 
the data segments examined. 
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Category Description Frequency Range 

Slide Signal with a frequency decline over several seconds 1000-3000 Hz 

Chirp Signal with a rise in frequency over several seconds 1000-3000 Hz 

Whistle Frequency varying signal over several seconds 1000-3000 Hz 

6000-18000 Hz 

Call Signal of constant frequency above 1 kHz over several 
seconds 

1000-2000 Hz 

Moan Signal of constant frequency below 1 kHz over many 
seconds 

200-600 Hz 

Click Broad band frequency feature on the order of one 
second 

3000-8000 Hz 

18000-24000 Hz 

 
Table 11.  Types of marine mammal vocalizations observed in the hydrophone data and automated for 

detection during analysis. 

 
Although the neural net provided an effective means to detect marine mammal vocalizations it was 
ineffective at classifying the signals into the classes listed in Table 11. This has been attributed to the 
complexity of the acoustic data being used, particularly the confounding influence of simultaneous sounds 
in the signal being examined, primarily clicks and mechanical noise. Further work is required to provide a 
training set that is specific to the mammal sound being investigated. From a processing perspective the 
processing of the data into a window of time using the fixed length spectrogram may not leave sufficient 
information to characterise the signal. The application of a varying window size or a wavelet approach is 
currently being studied. 
 
An alternative approach was to use the neural net to determine only whether a mammal vocalization was 
present or not in a particular section of data. The actual vocalization type was then detected using a 
technique in which one on detects the strongest signal in a given spectrogram window over a prescribed 
frequency range. Elements of each spectrogram less than fifteen times the standard deviation from the 
mean were rejected. This is in effect like a two dimensional low-pass filtering process on the spectrograms. 
Each remaining element is then redefined based on a weighted average of the elements surrounding it 
(within 0.16 seconds or 558 Hz). All non-zero elements of the smoothed spectrogram are examined, and 
the largest block of continuous non-zero elements is returned (Figure 84). The signal is then classified 
based on duration, frequency range and variation according to the list in Table 11. 
 
The combination of a neural net to detect marine vocalizations and a spectrogram threshold technique to 
classify the sounds worked well for slides, chirps, whistles, and calls (Table 11) and during some tests were 
we compared the success rate of the automated procedure with classification by listening we had 
agreement in better than 80% of the cases investigated. 
 
For the lower frequency vocalizations, defined as moans, the sound files were resampled at 2000 Hz 
before we used the spectrogram threshold technique. And for the high-frequency clicks associated with 
northern bottlenose whales we used the spectrogram threshold technique in the same way as above but 
instead of searching for spectrogram amplitudes above the threshold as a function of time we searched in 
frequency space. With the present electronics and platform noise level it was not possible to detect any 
marine mammal vocalizations at frequencies much below 200 Hz. 
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Figure 84. An example of the spectrogram threshold technique used to determine the different types of 
calls listed in Table 11, after a neural net had been used to identify a marine mammal 
vocalization. The frequency range in each of the three panels is 8.5-24 kHz. Upper panel 
shows the raw spectrogram, centre panel shows the smoothed spectrogram, and the lower 
panel shows the detected signal used for further analysis. The vocalization identified in this 
example would be classified as a call from the list in Table 11. 

RESULTS 

All the results of the analysis of the April and July data are presented separately in Appendices A and B. 
The overall statistics of the frequency and duration of occurrence of each vocalization are given for every 
station where good data were collected. As an example, Figure 85 shows the results from data recorded at 
Gully Station d2 in July 2003. The results are presented as the time of each call in minutes and percentage 
of total time with vocalizations. These figures give an indication of the relative frequency of the different 
types of vocalizations. 
 
Time series of acoustic signals, classified as described earlier (Table 11), have been included in the 
Appendices. For comparison the data are presented on a time scale of 30 minutes, which in some cases 
results in gaps in the plots. Figure 86 shows an example of such a time series of vocalizations processed 
using the neural net and spectrogram threshold methods.  
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Figure 85. Statistics of marine vocalizations recorded at Station d2 (Figure 83) in July 2003. This file 
includes about 36 minutes of data, of which just under six minutes includes signals classified 
as slides, five minutes are chirps and so on. Moans, which are analysed separately over a 5 
s interval, are present just over 25% of the time in this record and northern bottlenose whale 
clicks are heard in more than 40% of the data. 

 

 

 

Figure 86. Time series of marine vocalizations (MMVs) recorded at Station d3 on July 13-14, 2003. The 
northern bottlenose whale clicks are shown in grey. 

 
As noted earlier the marine mammal visual observations (MMOs) and the acoustical recordings (MMVs) 
were not coincidental, making it impossible to directly match the information from the two data sets. 
However, by assuming that the whales stay around the same area for a while we can compare the visual 
observations with the acoustical recordings. In Figure 87, visual observations of northern bottlenose whales 
and acoustical observations of high-frequency clicks for both the April and July data sets have been plotted 
together. Except for the high number of clicks recorded at station a2 in April when no northern bottlenose 
whales were observed, the results clearly shows the relationship between the acoustic and the visual 
observations. The results also show that during these relatively short periods the northern bottlenose 
whales were present in the outer part of the Gully and along the shelf break. 

CONCLUSIONS 

The visual and acoustic surveys carried out clearly show the abundance of marine mammals in the Gully 
region. Also evident is the extensive acoustic vocalizations of these mammals. About 80% of the acoustic 
records contain MMVs. However, due to the short data records and significant seasonal variability in 
species composition and number density between April and July it is not possible to assess whether any 
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temporal or spatial variability in the species composition and abundance are due to the presence of seismic 
activity in the area. 
 
The method used to collect the data, where hydrophones were suspended from the vessel, significantly 
compromised the quality of the data and more than 30 percent of the data that was recorded was 
subsequently rejected for analysis. The use of moored, self-recording hydrophone systems would have had 
the potential for providing acoustic data of higher quality over longer periods and therefore would be more 
suitable for analysis. It would also be desirable to have time and GPS position data included directly into 
the data files to simplify the analysis. 
 
  

 
 
Figure 87. Comparison of visual observations of northern bottlenose whales and acoustic detection of 

high-frequency clicks (18-24 kHz). 
 
The neural network analysis approach provided good MMV detection but was not suitable as a 
classification tool. The presence of multiple species MMVs at the same time combined with periodically 
significant platform noise required much more extensive network training than in previous analysis of single 
species data. The combination of a neural net and a spectrogram threshold approach classified 
vocalizations with an 80% success rate. However, this approach is very sensitive to choice of threshold, 
which again requires significant human interaction during the processing. Further research is required to 
identify a more effective and efficient method of feature extraction. 
 
The present study clearly shows the importance of simultaneous visual and acoustical observations of 
marine mammals in an area exposed to anthropogenic noise, such as seismic exploration, if we are going 
to learn more about possible impacts. However, the main conclusion is that in future studies any 
observations should start well before and end well after any seismic studies to properly assess possible 
influences on marine life. 
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APPENDIX A. Marine Mammal Vocalizations (MMVs) from April 2003 

Summary of the MMVs observed during the period from the 26th to the 29th of April. Visual observations in 
the same area were carried out from the 30 April to 1 May and are shown in Figure 83. The number of 
different vocalizations is summarized for each station in Figure A1 and the corresponding time series are 
shown in Figure A2 and A3. 
 

 
 

Figure A 1. Summary of marine vocalizations (MMVs) recorded at six stations in April 2003. The time of 
each recording period, the number of minutes analyzed, and the percentage of time each 
type of vocalization was detected are indicated in each panel. The clicks are high frequency 
(> 18 kHz) assumed to be northern bottlenose whales. 
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Figure A 2. Time series of MMVs separated into 30-minute sections for stations a2 and a3, April 2003. 
The northern bottlenose whale clicks are shown in grey. 

 

 

 
 

Figure A 3. Time series of MMVs separated into 30-minute sections for stations a4, a2, a1 and a3, 
April 2003. The northern bottlenose whale clicks are shown in grey. 
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APPENDIX B. Marine Mammal Vocalizations (MMVs) from July 2003 

Summary of the MMVs observed during the period from the 5th to the 8th of July, and on the13th and 14th of 
July. Visual observations in the same area were carried out from the 8th to the 11th of July and are shown in  
Figure 84. The number of different vocalizations is summarized for each station in Figures B1 to B3 and the 
corresponding time series are shown in Figures B4 to B9. 
 

 
 

Figure B 1. Summary of marine vocalizations (MMVs) recorded at nine stations in July 2003. The time of 
each recording period, the number of minutes analyzed, and the percentage of time each 
type of vocalization was detected are indicated in each panel. The clicks are high frequency 
(> 18 kHz) assumed to be northern bottlenose whales. 



GULLY SEISMIC RESEARCH PROGRAM VAGLE, CHANDLER AND ERICKSON 
 

 150

 

 

Figure B 2. Summary of marine vocalizations (MMVs) recorded at nine stations in July 2003. The time of 
each recording period, the number of minutes analyzed, and the percentage of time each 
type of vocalization was detected are indicated in each panel. The clicks are high frequency 
(> 18 kHz) assumed to be northern bottlenose whales. 

 

 

 
 

Figure B 3. Summary of marine vocalizations (MMVs) recorded at four stations in July 2003. The time of 
each recording period, the number of minutes analyzed, and the percentage of time each 
type of vocalization was detected are indicated in each panel. The clicks are high frequency 
(>18 kHz) assumed to be northern bottlenose whales 
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Figure B 4. Time series of MMVs separated into 30-minute sections for stations a2, b4, c2, d2, and d3, 
July 2003. 

 

  
 

Figure B 5. Time series of MMVs separated into 30-minute sections for stations a3, b1, and e2, July 
2003. 
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Figure B 6. Time series of MMVs separated into 30-minute sections for stations c3, and c4, July 2003. 

 

 
 

Figure B 7. Time series of MMVs separated into 30-minute sections for stations d4 and f2, July 2003. 
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Figure B 8. Time series of MMVs separated into 30-minute sections for stations e4, f1, and f3, July 2003. 

 

 

 

Figure B 9. Time series of MMVs separated into 30-minute sections for stations sa2, Shortland, sb2, 
se2, se3, July 2003. 
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